

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 1

Exercise 1

Given the function

$f(x,y) = -x^3 + y^3$ defined over the domain $D = 3x^2 + 6y^2 \leq 108$, compute its absolute maxima and minima.

- 1) The value of the minimum is *****.5 *****
- 2) The value of the minimum is *****.2 *****
- 3) The value of the minimum is *****.0 *****
- 4) The value of the minimum is *****.9 *****
- 5) The value of the minimum is *****.8 *****

Exercise 2

Compute the integral of $f(x,y,z) = z$

in the domain given by $0 \leq z \leq \sqrt{x^2 + y^2}$ and $(-4 + x)^2 + \frac{1}{4}(-2 + y)^2 \leq 1$

- 1) 317.625
- 2) 66.7588
- 3) 276.738
- 4) 4.294
- 5) 42.8065

Exercise 3

Compute the mean curvature for $X(u,v) = \{u, 2u^2, v\}$ at the point $(u,v) = (1, 3)$.

- 1) $H(1, 3) = 6.78202$
- 2) $H(1, 3) = 7.7564$
- 3) $H(1, 3) = 6.58852$
- 4) $H(1, 3) = 8.06062$
- 5) $H(1, 3) = 0.0285336$

Exercise 4

Consider the vector field $F(x,y,z) = (-z, 0, y)$ and the parameterized surface

$X: [0, 1] \times [-1, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (1 + uv, 2 + 2uv, v^2)$

Compute $\int_X F$.

- 1) -9.
- 2) -1.6
- 3) 0.2
- 4) -3.4

Exercise 5

$$\begin{cases} \frac{\partial^3 u}{\partial t^3}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0, \quad \lim_{t \rightarrow \infty} u(x, t) = 0 & 0 \leq t \\ u(x, 0) = 7 \sin(5x) - 9 \sin(x) & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x = 2$, $t = 0.003$, by separation of variables.

- 1) $u(2, 0.003) = *6*.****$
- 2) $u(2, 0.003) = *1*.****$
- 3) $u(2, 0.003) = *5*.****$
- 4) $u(2, 0.003) = *4*.****$
- 5) $u(2, 0.003) = *8*.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 2

Exercise 1

Given the function

$f(x,y) = 5x^3 - 5y^3$ defined over the domain $D = 30x^2 + 45y^2 \leq 2100$, compute its absolute maxima and minima.

- 1) The value of the minimum is *****.7 *****
- 2) The value of the minimum is *****.4 *****
- 3) The value of the minimum is *****.3 *****
- 4) The value of the minimum is *****.0 *****
- 5) The value of the minimum is *****.1 *****

Exercise 2

Compute the volume of the domain given by $0 \leq z \leq 3(x^2 + y^2)$ and $(-5 + x)^2 + \frac{1}{4}(-2 + y)^2 \leq 1$

- 1) 1336.37
- 2) 2587.36
- 3) 340.889
- 4) 570.199
- 5) 1757.97

Exercise 3

Compute the mean curvature for $X(u,v) = \{v \cos[u], v \sin[u], v\}$ at the point $(u,v) = (4, 2)$.

- 1) $H(4, 2) = 1.53035$
- 2) $H(4, 2) = -8.81327$
- 3) $H(4, 2) = 0.176777$
- 4) $H(4, 2) = 7.24505$
- 5) $H(4, 2) = 4.68635$

Exercise 4

Consider the vector field $F(x,y,z) = (-z, 0, 0)$ and the parameterized surface

$X: [0, 1] \times [-1, 0] \rightarrow \mathbb{R}^3$

$X(u,v) = (u, u + v^2, uv)$

Compute $\int_X F$.

- 1) -0.0833333
- 2) -1.28333
- 3) -1.78333
- 4) -0.383333

Exercise 5

$$\begin{cases} \frac{\partial^3 u}{\partial t^3}(x, t) = 25 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0, \quad \lim_{t \rightarrow \infty} u(x, t) = 0 & 0 \leq t \\ u(x, 0) = x & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x=1$, $t=0.009$, by separation of variables by means of a Fourier series of order 2.

1) $u(1, 0.009) = \text{****.5****}$

2) $u(1, 0.009) = \text{****.1****}$

3) $u(1, 0.009) = \text{****.7****}$

4) $u(1, 0.009) = \text{****.3****}$

5) $u(1, 0.009) = \text{****.6****}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 3

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{-2x^3 - 2y^3}{9x + 3x^2 + x^3 - 6x^4 + 3x^5 - 3y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -29
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -56
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 49, z \geq 7(x^2 + y^2)\}$

- 1) 4.35365
- 2) -9.79572
- 3) 3.26524
- 4) 10.8841
- 5) 3.26524

Exercise 3

Compute the center of curvature for $C(t) = \{t^2, 3+2t, -3t^2\}$ at the point $t=1$.

- 1) {18.5, -8.5, -23.2}
- 2) {6.6, -1.7, 2.3}
- 3) {1.5, -6.8, -6.2}
- 4) {11.7, -15.3, -6.2}
- 5) {3.2, -17., -9.6}

Exercise 4

Consider the vectorial field $F(x, y) = (y(3y+1)\cos(xy) - 2x, 3\sin(xy) + x(3y+1)\cos(xy) + x)$. Compute the potential function for this field whose potential at the origin is 1. Calculate the value of the potential at the point $p=(-5, -2)$.

- 1) -32.2799
- 2) 13.9201
- 3) -56.4799
- 4) -21.2799
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = -5 \cos(3x) - 9 \cos(5x) & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=2$ and the moment $t=0.008$.

- 1) $u(2, 0.008) = **0.*****$
- 2) $u(2, 0.008) = **6.*****$
- 3) $u(2, 0.008) = **5.*****$
- 4) $u(2, 0.008) = **7.*****$
- 5) $u(2, 0.008) = **1.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 4

Exercise 1

Given the functions

$$f(x, y) = (-1 + 2x - 3x^2 - 2y - xy - 3y^2, -3 + 3x + x^2 + y + 3xy + y^2)$$

and

$$g(u, v) = (3 - 2u - 3u^2 - v - 2uv + v^2, -3u + 3u^2 - 3v - 3uv),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p = (1, -1)$.

- 1) -396.
- 2) -602.747
- 3) -559.534
- 4) -519.295
- 5) -549.063

Exercise 2

Compute $\int_D (2y) dx dy$ for $D = \{0 \leq -5x \leq 4, 0 \leq 9x + 7y \leq 4\}$

- 1) 0.131429
- 2) 0.831429
- 3) -1.16857
- 4) 0.0314286
- 5) 0.731429

Exercise 3

Compute the center of curvature for $C(t) = \{-2t^2, t^2, 3-2t\}$ at the point $t=1$.

- 1) {-1.6, 9.9, 1.3}
- 2) {-9.4, -0.5, 10.4}
- 3) {-1.6, -4.4, 20.8}
- 4) {-6.8, 3.4, 13.}
- 5) {-9.4, 12.5, 14.3}

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (0, -x, 0)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (2, 2, 2t^2)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) -0.6 2) -3.8 3) 0. 4) -2.5

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = 9(6 - 6t) \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = -5 \sin(x) - 7 \sin(3x) & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x=2, t=0.001$, by separation of variables.

1) $u(2, 0.001) = **1.****$
 2) $u(2, 0.001) = **3.****$
 3) $u(2, 0.001) = **8.****$
 4) $u(2, 0.001) = **0.****$
 5) $u(2, 0.001) = **7.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 5

Exercise 1

Given the functions

$$f(x, y) = (3x^2 - 3y + 3xy - 2y^2, 2 + 2x + 2x^2 + 2y - xy + 3y^2)$$

and

$$g(u, v) = (1 + 2u^2 + v + 2uv + 2v^2, -3 + u - 2u^2 - v - 2uv - v^2),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p=(1, 1)$.

- 1) 18 506.3
- 2) 36 271.
- 3) 49 621.8
- 4) 57 748.5
- 5) 49 450.4

Exercise 2

Compute $\int_D (2x + y) dx dy$ for $D = \{0 \leq 3x - 7y \leq 5, 0 \leq 5x + 2y \leq 3\}$

- 1) 0.205235
- 2) 0.505235
- 3) -1.19477
- 4) 0.305235
- 5) 1.30523

Exercise 3

Compute the center of curvature for $C(t) = \{3t^2, -t^2, 2+2t\}$ at the point $t = -3$.

- 1) {27.4, -81.4, 650.4}
- 2) {190., 135.4, 162.6}
- 3) {27.4, -244., 704.6}
- 4) {81.6, -27.2, 542.}
- 5) {-406.2, 27., 650.4}

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (z, 0, x)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (3, 2t, 2t^2)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) 10.8 2) -6. 3) -13.2 4) -28.2

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = 16 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = x & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=2$

and the moment $t=0.008$ by means of a Fourier series of order 2.

1) $u(2, 0.008) = **9.****$
 2) $u(2, 0.008) = **3.****$
 3) $u(2, 0.008) = **6.****$
 4) $u(2, 0.008) = **2.****$
 5) $u(2, 0.008) = **5.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 6

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{x^4 - 2y^4}{-2x - x^2 + x^4 - x^5 + y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -15
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -31
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 25, z \geq 15(x^2 + y^2)\}$

- 1) 3.12074
- 2) 7.28173
- 3) 1.04025
- 4) 2.60062
- 5) 7.02167

Exercise 3

Compute the center of curvature for $C(t) = \{2t^2, -2-3t, t^2\}$ at the point $t=0$.

- 1) {0.4, -2.4, -0.7}
- 2) {2.6, -3.2, 2.3}
- 3) {0.4, -2.6, 1.5}
- 4) {1., -1., 1.1}
- 5) {1.8, -2., 0.9}

Exercise 4

Consider the vectorial field $F(x, y) = (-y(3y-2)\sin(xy) - 3, -(x(3y-2)\sin(xy)) + 3\cos(xy) + x)$. Compute the potential function for this field whose potential at the origin is -7. Calculate the integral of the potential function ϕ over the domain $[0,1]^2$.

- 1) -15.8131
- 2) -25.4131
- 3) -7.01307
- 4) -10.2131
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 5, \quad 0 < t \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(5, t) = 0 & 0 \leq t \\ u(x, 0) = 2 \cos\left(\frac{\pi x}{5}\right) - 9 \cos(\pi x) & 0 \leq x \leq 5 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=3$ and the moment $t=0.003$.

1) $u(3, 0.003) = **2.*****$

2) $u(3, 0.003) = **7.*****$

3) $u(3, 0.003) = **0.*****$

4) $u(3, 0.003) = **8.*****$

5) $u(3, 0.003) = **9.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 7

Exercise 1

Given the function

$f(x,y) = 5x^3 + 4y^3$ defined over the domain $D = 45x^2 + 24y^2 \leq 2004$, compute its absolute maxima and minima.

- 1) The value of the minimum is ****.2 ****
- 2) The value of the minimum is ****.7 ****
- 3) The value of the minimum is ****.0 ****
- 4) The value of the minimum is ****.9 ****
- 5) The value of the minimum is ****.8 ****

Exercise 2

Compute the integral of $f(x,y,z) = z$

in the domain given by $0 \leq z \leq \sqrt{x^2 + y^2}$ and $\frac{1}{16}(-5+x)^2 + \frac{1}{9}(-5+y)^2 \leq 1$

- 1) 5042.81
- 2) 600.63
- 3) 1060.29
- 4) 3505.84
- 5) 3540.85

Exercise 3

Compute the mean curvature for $X(u,v) = \{\cos[u], \sin[u], v\}$ at the point $(u,v) = (6, 10)$.

- 1) $H(6, 10) = -2.73233$
- 2) $H(6, 10) = -7.82263$
- 3) $H(6, 10) = 0.5$
- 4) $H(6, 10) = 3.63396$
- 5) $H(6, 10) = 7.78125$

Exercise 4

Consider the vector field $F(x,y,z) = (y, 0, 0)$ and the parameterized surface

$X: [0, 1] \times [-1, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (2u + 2v, u^2, 2)$

Compute $\int_X F$.

- 1) 2.1
- 2) -0.5
- 3) 0.
- 4) 1.6

Exercise 5

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x, t) = 25 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 4, \quad 0 < t \\ u(0, t) = u(4, t) = 0 & 0 \leq t \\ u(x, 0) = 6 \sin\left(\frac{\pi x}{4}\right) & 0 \leq x \leq 4 \\ \frac{\partial u}{\partial t}(x, 0) = x & 0 \leq x \leq 4 \\ 0 & \text{True} \end{cases}$$

Compute the position of the string at $x=3$
and the moment $t=0.001$ by means of a Fourier series of order 1.

- 1) $u(3, 0.001) = **3.*****$
- 2) $u(3, 0.001) = **1.*****$
- 3) $u(3, 0.001) = **0.*****$
- 4) $u(3, 0.001) = **5.*****$
- 5) $u(3, 0.001) = **4.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 8

Exercise 1

Given the function

$f(x,y) = x^3 - 5y^3$ defined over the domain $D = 6x^2 + 15y^2 \leq 156$, compute its absolute maxima and minima.

- 1) The value of the maximum is *****.0 *****
- 2) The value of the maximum is *****.4 *****
- 3) The value of the maximum is *****.7 *****
- 4) The value of the maximum is *****.2 *****
- 5) The value of the maximum is *****.6 *****

Exercise 2

Compute the volume of the domain given by $0 \leq z \leq 3(x^2 + y^2)$ and $\frac{1}{9}(-3+x)^2 + (-3+y)^2 \leq 1$

- 1) 1090.82
- 2) 2185.87
- 3) 579.624
- 4) 51.8596
- 5) 134.724

Exercise 3

Compute the mean curvature for $X(u,v) = \{v^2 \cos[u], v^2 \sin[u], v\}$ at the point $(u,v) = (2, 7)$.

- 1) $H(2, 7) = 3.03356$
- 2) $H(2, 7) = -2.2197$
- 3) $H(2, 7) = 6.42269$
- 4) $H(2, 7) = 5.18361$
- 5) $H(2, 7) = 0.000365351$

Exercise 4

Consider the vector field $F(x,y,z) = (x, z, 0)$ and the parameterized surface

$X: [0, 1] \times [0, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (2v^2, 1+uv, 1+2v^2)$

Compute $\int_X F$.

- 1) 2.
- 2) 1.6
- 3) -2.3
- 4) 2.1

Exercise 5

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \ 0 < t \\ u(0, t) = u(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = 6 \sin(6x) & 0 \leq x \leq \pi \\ \frac{\partial}{\partial t} u(x, 0) = 8 \sin(6x) & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the position of the string at $x=1$ and the moment $t=0.007$.

- 1) $u(1, 0.007) = **7.****$
- 2) $u(1, 0.007) = **2.****$
- 3) $u(1, 0.007) = **1.****$
- 4) $u(1, 0.007) = **5.****$
- 5) $u(1, 0.007) = **6.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 9

Exercise 1

Given the functions

$$f(x, y) = (3 - 3x^2 + 2y + 3xy, 3x - xy + 3y^2)$$

and

$$g(u, v) = (-1 - 3u + 2u^2 + 2v - 3uv + v^2, 3 + u + u^2 + uv - 3v^2),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p = (0, 0)$.

- 1) -582.631
- 2) -253.984
- 3) -651.902
- 4) -711.678
- 5) -456.

Exercise 2

Compute $\int_D (4x) dx dy$ for $D = \{0 \leq -3x - 3y \leq 5, 0 \leq 7x - 8y \leq 2\}$

- 1) 1.4642
- 2) -1.6358
- 3) -2.3358
- 4) -0.335802
- 5) 1.0642

Exercise 3

Compute the mean curvature for $X(u, v) = \{\cos[u], \sin[u], v\}$ at the point $(u, v) = (5, 8)$.

- 1) $H(5, 8) = -4.14621$
- 2) $H(5, 8) = 0.5$
- 3) $H(5, 8) = -5.70228$
- 4) $H(5, 8) = -8.27556$
- 5) $H(5, 8) = -3.74823$

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (-z, y, 0)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (2t^2, 1+t^2, 2t)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) -22.1667 2) 9.83333 3) 4.83333 4) -4.16667

Exercise 5

$$\begin{cases} (8 + 4x)(1+t+t^2) \frac{\partial u}{\partial t}(x, t) = (1+8x+2x^2)(1+2t) \frac{\partial u}{\partial x}(x, t) & 0 < x < 4, 0 < t \\ u(x, 0) = 3 \left(2x^2 + 8x + 1\right)^3 - \frac{3}{(2x^2+8x+1)^2} & 0 \leq x \leq 4 \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution for this boundary problem at the points $x=3$, $t=0.001$, by means of the technique of separation of variables.

1) $u(3, 0.001) = 1*****.****$
 2) $u(3, 0.001) = 2*****.****$
 3) $u(3, 0.001) = 3*****.****$
 4) $u(3, 0.001) = 8*****.****$
 5) $u(3, 0.001) = 5*****.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 10

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{-3x^4 - y^4}{6x + 4x^2 + x^4 - 2x^5 - 2x^6 - 2y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 58
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -84
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 64, z \geq 13(x^2 + y^2)\}$

- 1) 4.61765
- 2) 4.61765
- 3) 2.30883
- 4) 7.69609
- 5) -3.84805

Exercise 3

Compute the center of curvature for $C(t) = \{-3t^2, -2+3t, -t^2\}$ at the point $t = -3$.

- 1) {25.05, 322.2, 44.15}
- 2) {-82.35, 358., -27.45}
- 3) {-332.95, 250.6, 294.75}
- 4) {-368.75, 286.4, -349.65}
- 5) {-46.55, 680.2, 187.35}

Exercise 4

Consider the vectorial field $F(x, y) = (2x(2y+1)y^2 + 2x, 2x^2y^2 + 2x^2y(2y+1))$. Compute the potential function for this field whose potential at the origin is 5. Calculate the value of the potential at the point $p = (-7, 2)$.

- 1) 3515.6
- 2) -2895.2
- 3) 1551.
- 4) 1034.
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 4, \quad 0 < t \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(4, t) = 0 & 0 \leq t \\ u(x, 0) = -7 \cos\left(\frac{\pi x}{4}\right) - 4 \cos(\pi x) & 0 \leq x \leq 4 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=3$ and the moment $t=0.001$.

1) $u(3, 0.001) = **8.*****$

2) $u(3, 0.001) = **9.*****$

3) $u(3, 0.001) = **0.*****$

4) $u(3, 0.001) = **5.*****$

5) $u(3, 0.001) = **6.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 11

Exercise 1

Given the function

$f(x,y) = 5x^3 + 4y^3$ defined over the domain $D = 15x^2 + 12y^2 \leq 108$, compute its absolute maxima and minima.

- 1) The value of the maximum is ****.3 ****
- 2) The value of the maximum is ****.9 ****
- 3) The value of the maximum is ****.6 ****
- 4) The value of the maximum is ****.0 ****
- 5) The value of the maximum is ****.1 ****

Exercise 2

Compute the integral of $f(x,y,z) = z$

in the domain given by $0 \leq z \leq \sqrt{x^2 + y^2}$ and $\frac{1}{25}(-5+x)^2 + (-5+y)^2 \leq 1$

- 1) 1228.31
- 2) 1779.73
- 3) 443.75
- 4) 200.316
- 5) 2153.87

Exercise 3

Compute the mean curvature for $X(u,v) = \{\cos[u], \sin[u], v\}$ at the point $(u,v) = (1, 5)$.

- 1) $H(1, 5) = -4.23439$
- 2) $H(1, 5) = -2.54958$
- 3) $H(1, 5) = 0.5$
- 4) $H(1, 5) = 5.61438$
- 5) $H(1, 5) = -6.29419$

Exercise 4

Consider the vector field $F(x,y,z) = (-z, x, 0)$ and the parameterized surface

$X: [0, 1] \times [-1, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (1 + uv, 2, 2u^2)$

Compute $\int_X F$.

- 1) 2.66667
- 2) 6.46667
- 3) 2.46667
- 4) 0.466667

Exercise 5

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x, t) = 25 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 4, \quad 0 < t \\ u(0, t) = u(4, t) = 0 & 0 \leq t \\ u(x, 0) = 8 \sin\left(\frac{\pi x}{4}\right) & 0 \leq x \leq 4 \\ \frac{\partial u}{\partial t}(x, 0) = x & 0 \leq x \leq 4 \\ 0 & \text{True} \end{cases}$$

Compute the position of the string at $x=1$
and the moment $t=0.005$ by means of a Fourier series of order 1.

- 1) $u(1, 0.005) = **8.*****$
- 2) $u(1, 0.005) = **0.*****$
- 3) $u(1, 0.005) = **1.*****$
- 4) $u(1, 0.005) = **5.*****$
- 5) $u(1, 0.005) = **3.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 12

Exercise 1

Given the functions

$$f(x, y) = (3x^2 + 3y + 3y^2, x + y + xy + 2y^2)$$

and

$$g(u, v) = (1 + 3u + 2u^2 + 2v + 2uv + v^2, u + 3u^2 + v - 2v^2),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p = (1, -1)$.

- 1) 3707.12
- 2) 5234.03
- 3) 2892.
- 4) 3197.53
- 5) 5307.64

Exercise 2

Compute $\int_D (2x + 2y) dx dy$ for $D = \{0 \leq 6x + 6y \leq 2, 0 \leq 6x - 2y \leq 4\}$

- 1) 0.255556
- 2) 1.25556
- 3) 1.25556
- 4) 0.0555556
- 5) -1.64444

Exercise 3

Compute the center of curvature for $C(t) = \{-3t^2, -t^2, -1+t\}$ at the point $t=3$.

- 1) {567.45, 945.85, -108.1}
- 2) {-81.15, -27.05, -1081.}
- 3) {567.45, -675.65, -1945.8}
- 4) {891.75, -783.75, -216.2}
- 5) {243.15, -999.95, -756.7}

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (0, z, x)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (2 + 2t, 2, 2t + 2t^2)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) 1.16667 2) 2.76667 3) 0.666667 4) 4.16667

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = 16 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = x & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=2$

and the moment $t=0.003$ by means of a Fourier series of order 2.

1) $u(2, 0.003) = **8.****$
 2) $u(2, 0.003) = **5.****$
 3) $u(2, 0.003) = **4.****$
 4) $u(2, 0.003) = **6.****$
 5) $u(2, 0.003) = **2.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 13

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{-3x^4 - 3y^4}{6x + 9x^2 + x^4 + 6x^5 - 3x^6 - 3y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -51
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 112
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 121, z \geq 4(x^2 + y^2)\}$

- 1) 117.452
- 2) -42.2826
- 3) -9.39614
- 4) 46.9807
- 5) -18.7923

Exercise 3

Compute the center of curvature for $C(t) = \{-3t^2, -3t^2, 3-2t\}$ at the point $t=3$.

- 1) {-958.833, 308.667, 780.}
- 2) {-763.833, -958.833, 1267.5}
- 3) {-81.3333, -81.3333, 975.}
- 4) {-471.333, -276.333, 1560.}
- 5) {-666.333, -276.333, 1657.5}

Exercise 4

Consider the vectorial field $F(x, y) = (2xy^2, 2x^2y + x)$. Compute the potential function for this field whose potential at the origin is 7.

. Calculate the integral of the potential function ϕ over the domain $[0,1]^2$.

- 1) -6.18889
- 2) 6.41111
- 3) 1.51111
- 4) 7.11111
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x, t) = 4 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \ 0 < t \\ u(0, t) = u(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = 8 \sin(7x) & 0 \leq x \leq \pi \\ \frac{\partial}{\partial t} u(x, 0) = -9 \sin(7x) & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the position of the string at $x=1$ and the moment $t=0.009$.

- 1) $u(1, 0.009) = **2.****$
- 2) $u(1, 0.009) = **8.****$
- 3) $u(1, 0.009) = **0.****$
- 4) $u(1, 0.009) = **5.****$
- 5) $u(1, 0.009) = **7.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 14

Exercise 1

Given the functions

$$f(x, y) = (3 + x + x^2 + 3y - 3xy - 3y^2, -2 + x + 3x^2 + 3y - 2xy)$$

and

$$g(u, v) = (-3 + u - 2u^2 - 3v - 2uv + v^2, 3u - 3u^2 - v + uv + 3v^2),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p=(0, 1)$.

- 1) 2845.43
- 2) 2729.12
- 3) 2117.11
- 4) 2649.04
- 5) 1818.

Exercise 2

Compute $\int_D (x + y) dx dy$ for $D = \{0 \leq -5x - 7y \leq 3, 0 \leq -6x + 7y \leq 5\}$

- 1) -0.0619835
- 2) 1.83802
- 3) 0.838017
- 4) -0.461983
- 5) 0.738017

Exercise 3

Compute the mean curvature for $X(u, v) = \{\cos[u], \sin[u], v\}$ at the point $(u, v) = (6, 2)$.

- 1) $H(6, 2) = -7.66881$
- 2) $H(6, 2) = -8.65065$
- 3) $H(6, 2) = 0.5$
- 4) $H(6, 2) = -4.62606$
- 5) $H(6, 2) = 1.65228$

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (0, z, -x)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (2 + t^2, 1, t^2)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) 3.3 2) 2.5 3) 8.7 4) -3.7

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = 4 \sin(x) + 9 \sin(4x) & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=1$ and the moment $t=0.009$.

1) $u(1, 0.009) = **7.****$

2) $u(1, 0.009) = **6.****$

3) $u(1, 0.009) = **5.****$

4) $u(1, 0.009) = **2.****$

5) $u(1, 0.009) = **8.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 15

Exercise 1

Given the function

$f(x,y) = -5x^3 + y^3$ defined over the domain $D = 45x^2 + 6y^2 \leq 1716$, compute its absolute maxima and minima.

- 1) The value of the minimum is *****. 2 *****
- 2) The value of the minimum is *****. 7 *****
- 3) The value of the minimum is *****. 6 *****
- 4) The value of the minimum is *****. 4 *****
- 5) The value of the minimum is *****. 3 *****

Exercise 2

Compute the volume of the domain given by $0 \leq z \leq 3(x^2 + y^2)$ and $\frac{1}{4}(-3 + x)^2 + (-2 + y)^2 \leq 1$

- 1) 268.606
- 2) 169.31
- 3) 1255.37
- 4) 179.794
- 5) 210.878

Exercise 3

Compute the mean curvature for $X(u,v) = \{\cos[u], \sin[u], v\}$ at the point $(u,v) = (2, 4)$.

- 1) $H(2, 4) = -7.79362$
- 2) $H(2, 4) = 0.5$
- 3) $H(2, 4) = 2.50385$
- 4) $H(2, 4) = -8.02075$
- 5) $H(2, 4) = -4.45746$

Exercise 4

Consider the vector field $F(x,y,z) = (0, -y, -z)$ and the parameterized surface

$X: [0, 1] \times [-1, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (v^2, uv + 2v^2, u + 2uv)$

Compute $\int_X F$.

- 1) 2.4
- 2) -3.2
- 3) -7.6
- 4) 12.

Exercise 5

$$\left\{ \begin{array}{ll} \frac{\partial^2 u}{\partial t^2}(x, t) = 25 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 1, \quad 0 < t \\ u(0, t) = u(1, t) = 0 & 0 \leq t \\ u(x, 0) = -3 \sin(2\pi x) & 0 \leq x \leq 1 \\ \frac{\partial}{\partial t} u(x, 0) = x & 0 \leq x \leq 1 \\ 0 & \text{True} \end{array} \right.$$

Compute the position of the string at $x = \frac{1}{2}$

and the moment $t = 0.01$ by means of a Fourier series of order 1.

$$1) \quad u\left(\frac{1}{2}, 0.01\right) = \text{****.***1*}$$

$$2) \quad u\left(\frac{1}{2}, 0.01\right) = \text{****.***3*}$$

$$3) \quad u\left(\frac{1}{2}, 0.01\right) = \text{****.***9*}$$

$$4) \quad u\left(\frac{1}{2}, 0.01\right) = \text{****.***2*}$$

$$5) \quad u\left(\frac{1}{2}, 0.01\right) = \text{****.***6*}$$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 16

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{-3x^3 + y^3}{4x + 6x^2 + x^3 + 4x^4 - 2y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 5
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 4
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 225, z \geq 3(x^2 + y^2)\}$

- 1) 139.812
- 2) 233.021
- 3) 116.51
- 4) -23.3021
- 5) -11.651

Exercise 3

Compute the center of curvature for $C(t) = \{-2 - 2t, 3t^2, 2t^2\}$ at the point $t = -2$.

- 1) {-63., -5.53846, 3.30769}
- 2) {-357., 162.462, 66.3077}
- 3) {-210., 36.4615, 24.3077}
- 4) {-168., 78.4615, -17.6923}
- 5) {-315., -5.53846, -143.692}

Exercise 4

Consider the vectorial field $F(x, y) = \left(\frac{y(1-xy)}{xy+1} - y \log(xy+1) + 3, \frac{x(1-xy)}{xy+1} - x \log(xy+1) \right)$

). Compute the potential function for this field whose potential at the origin is 0.

. Calculate the integral of the potential function ϕ over the domain $[0,1]^2$.

- 1) -0.380005
- 2) 4.61999
- 3) 2.91999
- 4) 1.61999
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial^3 u}{\partial t^3}(x, t) = 4 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0, \quad \lim_{t \rightarrow \infty} u(x, t) = 0 & 0 \leq t \\ u(x, 0) = 7 \sin(8x) - 2 \sin(5x) & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x = 2$, $t = 0.007$, by separation of variables.

1) $u(2, 0.007) = \text{****.9****}$

2) $u(2, 0.007) = \text{****.1****}$

3) $u(2, 0.007) = \text{****.4****}$

4) $u(2, 0.007) = \text{****.8****}$

5) $u(2, 0.007) = \text{****.7****}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 17

Exercise 1

Given the function

$f(x,y) = 3x^3 + y^3$ defined over the domain $D = 18x^2 + 3y^2 \leq 300$, compute its absolute maxima and minima.

- 1) The value of the maximum is ****.3 ****
- 2) The value of the maximum is ****.0 ****
- 3) The value of the maximum is ****.2 ****
- 4) The value of the maximum is ****.4 ****
- 5) The value of the maximum is ****.7 ****

Exercise 2

Compute the integral of $f(x,y,z) = z$

in the domain given by $0 \leq z \leq 3\sqrt{x^2 + y^2}$ and $(-2 + x)^2 + \frac{1}{4}(-2 + y)^2 \leq 1$

- 1) 261.538
- 2) 824.803
- 3) 985.077
- 4) 146.283
- 5) 137.405

Exercise 3

Compute the mean curvature for $X(u,v) = \{v^2 \cos[u], v^2 \sin[u], v\}$ at the point $(u,v) = (5, 2)$.

- 1) $H(5, 2) = -5.61436$
- 2) $H(5, 2) = -0.521338$
- 3) $H(5, 2) = 0.0160502$
- 4) $H(5, 2) = 5.34517$
- 5) $H(5, 2) = -3.33063$

Exercise 4

Consider the vector field $F(x,y,z) = (0, y, z)$ and the parameterized surface

$X: [0, 1] \times [0, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (1 + v, u^2 + 2v^2, 2uv)$

Compute $\int_X F$.

- 1) 0.666667
- 2) -1.43333
- 3) 3.46667
- 4) -3.23333

Exercise 5

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x, t) = 9 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \ 0 < t \\ u(0, t) = u(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = -5 \sin(2x) & 0 \leq x \leq \pi \\ \frac{\partial}{\partial t} u(x, 0) = x & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the position of the string at $x=1$
and the moment $t=0.005$ by means of a Fourier series of order 1.

- 1) $u(1, 0.005) = \text{****.***5*}$
- 2) $u(1, 0.005) = \text{****.***1*}$
- 3) $u(1, 0.005) = \text{****.***8*}$
- 4) $u(1, 0.005) = \text{****.***4*}$
- 5) $u(1, 0.005) = \text{****.***7*}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 18

Exercise 1

Given the functions

$$f(x, y) = (3 - x + 3y + 2xy - 3y^2, -3 - x - x^2 + xy + 2y^2)$$

and

$$g(u, v) = (-3 - 2u + u^2 + v - 2uv - v^2, 2 + 3u^2 + 3v - 2uv + v^2),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p = (-1, -1)$.

- 1) -148.082
- 2) -40.3732
- 3) -90.
- 4) -140.778
- 5) -76.3932

Exercise 2

Compute $\int_D (3x) dx dy$ for $D = \{0 \leq -8x + 7y \leq 9, 0 \leq x - 5y \leq 3\}$

- 1) -2.85455
- 2) -4.35455
- 3) -3.75455
- 4) -2.45455
- 5) -4.35455

Exercise 3

Compute the mean curvature for $X(u, v) = \{\cos[u], \sin[u], v\}$ at the point $(u, v) = (6, 2)$.

- 1) $H(6, 2) = 0.5$
- 2) $H(6, 2) = -2.15629$
- 3) $H(6, 2) = -8.37477$
- 4) $H(6, 2) = 1.76767$
- 5) $H(6, 2) = 1.14562$

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (z, 0, -x)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (4, 3t, 1)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) 1.4 2) 0. 3) -0.9 4) -3.9

Exercise 5

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 3, 0 < t \\ u(0, t) = u(3, t) = 0 & 0 \leq t \\ u(x, 0) = 3 \sin\left(\frac{\pi x}{3}\right) & 0 \leq x \leq 3 \\ \frac{\partial}{\partial t} u(x, 0) = x^2 & 0 \leq x \leq 3 \\ 0 & \text{True} \end{cases}$$

Compute the position of the string at $x=2$

and the moment $t=0.002$ by means of a Fourier series of order 1.

1) $u(2, 0.002) = **9.****$
 2) $u(2, 0.002) = **2.****$
 3) $u(2, 0.002) = **4.****$
 4) $u(2, 0.002) = **8.****$
 5) $u(2, 0.002) = **1.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 19

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{x^3 - y^3}{6x + 6x^2 + x^3 + 2x^4 - 2y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -26
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 40
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 16, z \geq 9(x^2 + y^2)\}$

- 1) 2.7541
- 2) -0.82623
- 3) 3.02951
- 4) 2.47869
- 5) 5.78361

Exercise 3

Compute the center of curvature for $C(t) = \{t^2, t^2, 2-t\}$ at the point $t=1$.

- 1) {8.25, -0.75, 3.}
- 2) {3.25, 3.25, 10.}
- 3) {0.25, 0.25, 3.}
- 4) {7.25, 7.25, 7.}
- 5) {12.25, 9.25, 11.}

Exercise 4

Consider the vectorial field $F(x, y) = (6y \sin(xy) + 1, 6x \sin(xy))$. Compute the potential function for this field whose potential at the origin is -6.

. Calculate the value of the potential at the point $p=(0, -5)$.

- 1) 11.4
- 2) 12.
- 3) -25.8
- 4) -6.
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 4, \quad 0 < t \\ u(0, t) = u(4, t) = 0 & 0 \leq t \\ u(x, 0) = \sin\left(\frac{\pi x}{4}\right) - 6 \sin(2\pi x) & 0 \leq x \leq 4 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=3$ and the moment $t=0.003$.

1) $u(3, 0.003) = \text{****.9***}$

2) $u(3, 0.003) = \text{****.0***}$

3) $u(3, 0.003) = \text{****.6***}$

4) $u(3, 0.003) = \text{****.3***}$

5) $u(3, 0.003) = \text{****.7***}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 20

Exercise 1

Given the function

$f(x,y) = x^3 - 5y^3$ defined over the domain $D = \{ (x,y) \mid 3x^2 + 30y^2 \leq 492 \}$, compute its absolute maxima and minima.

- 1) The value of the maximum is *****.8 *****
- 2) The value of the maximum is *****.2 *****
- 3) The value of the maximum is *****.7 *****
- 4) The value of the maximum is *****.1 *****
- 5) The value of the maximum is *****.6 *****

Exercise 2

Compute the volume of the domain given by $0 \leq z \leq 3(x^2 + y^2)$ and $(-4 + x)^2 + \frac{1}{4}(-2 + y)^2 \leq 1$

- 1) 1193.42
- 2) 400.553
- 3) 1234.13
- 4) 138.028
- 5) 124.838

Exercise 3

Compute the mean curvature for $X(u,v) = \{u, u^2, v\}$ at the point $(u,v) = (1, 2)$.

- 1) $H(1, 2) = -1.85847$
- 2) $H(1, 2) = 3.71888$
- 3) $H(1, 2) = 0.0894427$
- 4) $H(1, 2) = 5.16315$
- 5) $H(1, 2) = -6.01711$

Exercise 4

Consider the vector field $F(x,y,z) = (0, 0, y)$ and the parameterized surface

$X: [0, 1] \times [-1, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (uv, 2v^2, 2 + 2uv)$

Compute $\int_X F$.

- 1) 13.1
- 2) -1.9
- 3) 10.7
- 4) 3.2

Exercise 5

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = -5 \sin(x) & 0 \leq x \leq \pi \\ \frac{\partial}{\partial t} u(x, 0) = x^2 & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the position of the string at $x=1$
and the moment $t=0.007$ by means of a Fourier series of order 1.

- 1) $u(1, 0.007) = **4.*****$
- 2) $u(1, 0.007) = **5.*****$
- 3) $u(1, 0.007) = **3.*****$
- 4) $u(1, 0.007) = **1.*****$
- 5) $u(1, 0.007) = **6.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 21

Exercise 1

Given the functions

$$f(x, y) = (-x - 2x^2 - 3xy, 2 - x - 3x^2 - 3y - y^2)$$

and

$$g(u, v) = (-3 + u + 2u^2 - 3v - 2uv + 3v^2, -3u + v + 3uv - 3v^2),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p = (0, -1)$.

- 1) 12.6719
- 2) 75.2639
- 3) 98.6666
- 4) 68.4215
- 5) 56.

Exercise 2

Compute $\int_D (4y) dx dy$ for $D = \{0 \leq 4x + 7y \leq 1, 0 \leq -3x + 8y \leq 1\}$

- 1) 0.904984
- 2) 1.40498
- 3) 0.104984
- 4) -1.49502
- 5) 0.00498398

Exercise 3

Compute the center of curvature for $C(t) = \{-3t^2, -3 - t, 3t^2\}$ at the point $t = 3$.

- 1) {307.117, 1746.9, -1665.82}
- 2) {1083.52, 3493.8, -1083.52}
- 3) {-81.0833, 1941., 81.0833}
- 4) {1277.62, 1164.6, 469.283}
- 5) {1665.82, 582.3, 1827.98}

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (0, y, 0)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (2t + 2t^2, t^2, 1)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) -0.5 2) 0.2 3) -4. 4) -0.4

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = 16 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = x^2 & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=2$

and the moment $t=0.005$ by means of a Fourier series of order 1.

1) $u(2, 0.005) = **4.****$

2) $u(2, 0.005) = **3.****$

3) $u(2, 0.005) = **2.****$

4) $u(2, 0.005) = **9.****$

5) $u(2, 0.005) = **8.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 22

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{-2x^4 - 2y^4}{-6x - 6x^2 + x^4 + 2x^5 + 2y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -164
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -225
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 49, z \geq 7(x^2 + y^2)\}$

- 1) 27.2103
- 2) 10.8841
- 3) 9.79572
- 4) -5.44207
- 5) 5.44207

Exercise 3

Compute the center of curvature for $C(t) = \{-2t^2, t^2, -1+t\}$ at the point $t=0$.

- 1) {-0.2, 0.1, -1.}
- 2) {-0.1, -0.3, -0.7}
- 3) {-0.4, 0.9, -0.7}
- 4) {-0.3, 0.4, -0.9}
- 5) {-0.9, -0.4, -1.7}

Exercise 4

Consider the vectorial field $F(x, y) = \left(\frac{y(3y+1)}{xy+1} - 2, \frac{x(3y+1)}{xy+1} + 3 \log(xy+1) \right)$

). Compute the potential function for this field whose potential at the origin is -1.

. Calculate the integral of the potential function ϕ over the domain $[0,1]^2$.

- 1) 3.81764
- 2) 6.21764
- 3) 6.01764
- 4) -1.38236
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = -8 \cos(4x) - 8 \cos(6x) & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=1$ and the moment $t=0.001$.

- 1) $u(1, 0.001) = **1.*****$
- 2) $u(1, 0.001) = **2.*****$
- 3) $u(1, 0.001) = **3.*****$
- 4) $u(1, 0.001) = **5.*****$
- 5) $u(1, 0.001) = **6.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 23

Exercise 1

Given the functions

$$f(x, y) = (3 + 3x - 3x^2 + y - xy - 3y^2, 3 - 2x + 3x^2 + y - 2xy + 2y^2)$$

and

$$g(u, v) = (-1 - u - u^2 + 3v + 2uv - 3v^2, -1 - 3u - u^2 + v - uv + 2v^2),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point

$$p = (-1, -1).$$

- 1) 77 689.1
- 2) 38 793.9
- 3) 53 314.
- 4) 20 146.6
- 5) 18 351.5

Exercise 2

Compute $\int_D (4x) dx dy$ for $D = \{0 \leq -8x + 9y \leq 6, 0 \leq -6x \leq 9\}$

- 1) -3.
- 2) -4.1
- 3) -3.6
- 4) -1.9
- 5) -1.9

Exercise 3

Compute the mean curvature for $X(u, v) = \{\cos[u], \sin[u], v\}$ at the point $(u, v) = (4, 2)$.

- 1) $H(4, 2) = 0.5$
- 2) $H(4, 2) = 6.31177$
- 3) $H(4, 2) = 8.64727$
- 4) $H(4, 2) = 2.39006$
- 5) $H(4, 2) = -6.47127$

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (0, -x, 0)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (3t^2, t^2, 2t + 2t^2)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) -2.3 2) 3.1 3) 1.5 4) -1.8

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = 25 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 1, 0 < t \\ u(0, t) = u(1, t) = 0 & 0 \leq t \\ u(x, 0) = -\sin(5\pi x) - 8 \sin(7\pi x) & 0 \leq x \leq 1 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x = \frac{3}{5}$ and the moment $t = 0.003$.

1) $u\left(\frac{3}{5}, 0.003\right) = \text{*****.*****}2$

2) $u\left(\frac{3}{5}, 0.003\right) = \text{*****.*****}7$

3) $u\left(\frac{3}{5}, 0.003\right) = \text{*****.*****}9$

4) $u\left(\frac{3}{5}, 0.003\right) = \text{*****.*****}3$

5) $u\left(\frac{3}{5}, 0.003\right) = \text{*****.*****}8$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 24

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{3x^3 + y^3}{-2x - 6x^2 + x^3 + 4x^4 - 4x^5 + 2y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 3
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 4
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 225, z \geq 8(x^2 + y^2)\}$

- 1) 52.7941
- 2) 26.397
- 3) 114.387
- 4) 43.9951
- 5) 123.186

Exercise 3

Compute the center of curvature for $C(t) = \{-2t^2, -3t, t^2\}$ at the point $t=2$.

- 1) $\{-73.5, 26.8333, -18.9\}$
- 2) $\{-52.3, 74.5333, -24.2\}$
- 3) $\{-4.6, 85.1333, 28.8\}$
- 4) $\{-25.8, 53.3333, 12.9\}$
- 5) $\{-15.2, 32.1333, 55.3\}$

Exercise 4

Consider the vectorial field $F(x, y) = \left(\frac{y(1-3xy)}{xy+1}, \frac{x(1-3xy)}{xy+1} - 3y \log(xy+1) + 2x \right)$

). Compute the potential function for this field whose potential at the origin is -4.

. Calculate the integral of the potential function ϕ over the domain $[0,1]^2$.

- 1) -8.5242
- 2) 3.4758
- 3) -5.3242
- 4) -3.7242
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial^3 u}{\partial t^3}(x, t) = 4 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 4, \quad 0 < t \\ u(0, t) = u(4, t) = 0, \quad \lim_{t \rightarrow \infty} u(x, t) = 0 & 0 \leq t \\ u(x, 0) = 3 \sin\left(\frac{3\pi x}{4}\right) + 4 \sin\left(\frac{7\pi x}{4}\right) & 0 \leq x \leq 4 \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x=2$, $t=0.01$, by separation of variables.

- 1) $u(2, 0.01) = **3.*****$
- 2) $u(2, 0.01) = **5.*****$
- 3) $u(2, 0.01) = **2.*****$
- 4) $u(2, 0.01) = **8.*****$
- 5) $u(2, 0.01) = **6.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 25

Exercise 1

Given the functions

$$f(x, y) = (-1 + 3xy + 2y^2, 3 + x + 2x^2 + 3xy)$$

and

$$g(u, v) = (-1 - 3u + 2u^2 - 3v - v^2, 2u + 2u^2 + v - 2uv + 3v^2),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p = (1, -1)$.

- 1) 4635.75
- 2) 4627.9
- 3) 2102.95
- 4) 617.249
- 5) 2527.

Exercise 2

Compute $\int_D (4x) dx dy$ for $D = \{0 \leq y \leq 2, 0 \leq -3x - 7y \leq 5\}$

- 1) -4.41605
- 2) -2.41605
- 3) -3.51605
- 4) -2.71605
- 5) -1.91605

Exercise 3

Compute the center of curvature for $C(t) = \{3t^2, -3 - 2t, -3t^2\}$ at the point $t = -2$.

- 1) {-225.567, -116.4, 196.467}
- 2) {298.233, -203.7, -94.5333}
- 3) {36.3333, -291., -36.3333}
- 4) {-196.467, -465.6, -65.4333}
- 5) {152.733, -87.3, 80.0667}

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (0, 0, y)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (2t, 4t, 4)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) 3.6 2) -2.8 3) 0. 4) 2.7

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = 9(4 + 8t) \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 4, \quad 0 < t \\ u(0, t) = u(4, t) = 0 & 0 \leq t \\ u(x, 0) = -3 \sin\left(\frac{3\pi x}{4}\right) - 9 \sin\left(\frac{3\pi x}{2}\right) & 0 \leq x \leq 4 \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x=2, t=0.008$, by separation of variables.

1) $u(2, 0.008) = \text{****.3***}$
 2) $u(2, 0.008) = \text{****.4***}$
 3) $u(2, 0.008) = \text{****.5***}$
 4) $u(2, 0.008) = \text{****.1***}$
 5) $u(2, 0.008) = \text{****.2***}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 26

Exercise 1

Given the function

$f(x,y) = -5x^3 - 5y^3$ defined over the domain $D = 15x^2 + 30y^2 \leq 540$, compute its absolute maxima and minima.

- 1) The value of the maximum is *****.6 *****
- 2) The value of the maximum is *****.2 *****
- 3) The value of the maximum is *****.8 *****
- 4) The value of the maximum is *****.7 *****
- 5) The value of the maximum is *****.0 *****

Exercise 2

Compute the volume of the domain given by $0 \leq z \leq 3(x^2 + y^2)$ and $\frac{1}{4}(-2+x)^2 + (-2+y)^2 \leq 1$

- 1) 684.09
- 2) 447.017
- 3) 174.358
- 4) 252.489
- 5) 101.935

Exercise 3

Compute the mean curvature for $X(u,v) = \{v \cos[u], v \sin[u], v\}$ at the point $(u,v) = (1, 4)$.

- 1) $H(1, 4) = 0.0883883$
- 2) $H(1, 4) = -7.65512$
- 3) $H(1, 4) = -7.19218$
- 4) $H(1, 4) = 1.53678$
- 5) $H(1, 4) = 8.84095$

Exercise 4

Consider the vector field $F(x,y,z) = (-z, 0, 0)$ and the parameterized surface

$X: [0, 1] \times [-1, 0] \rightarrow \mathbb{R}^3$

$X(u,v) = (1, 2u^2 + v, 2u)$

Compute $\int_X F$.

- 1) -3.
- 2) -5.4
- 3) 6.4
- 4) 2.

Exercise 5

$$\begin{cases} \frac{\partial^3 u}{\partial t^3}(x, t) = 25 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0, \quad \lim_{t \rightarrow \infty} u(x, t) = 0 & 0 \leq t \\ u(x, 0) = x & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x=1$, $t=0.008$, by separation of variables by means of a Fourier series of order 2.

1) $u(1, 0.008) = \text{****.7****}$

2) $u(1, 0.008) = \text{****.8****}$

3) $u(1, 0.008) = \text{****.6****}$

4) $u(1, 0.008) = \text{****.2****}$

5) $u(1, 0.008) = \text{****.3****}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 27

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{x^3 + 2y^3}{-x - 2x^2 + x^3 + 2x^4 + y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 3
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -4
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 121, z \geq 12(x^2 + y^2)\}$

- 1) 15.779
- 2) 25.2464
- 3) 22.0906
- 4) 18.9348
- 5) -3.1558

Exercise 3

Compute the center of curvature for $C(t) = \{-t^2, 2t^2, -3 - 2t\}$ at the point $t=3$.

- 1) {132.8, -158.8, 213.6}
- 2) {159.5, -25.3, 106.8}
- 3) {-27.4, 54.8, 267.}
- 4) {-0.7, -158.8, 453.9}
- 5) {26., 81.5, 240.3}

Exercise 4

Consider the vectorial field $F(x, y) = (2y \cos(xy) - 3, 2x \cos(xy) + x)$. Compute the potential function for this field whose potential at the origin is -4.

. Calculate the integral of the potential function ϕ over the domain $[0,1]^2$.

- 1) -5.02038
- 2) -2.62038
- 3) -29.0204
- 4) -8.02038
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x, t) = 4 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 3, \ 0 < t \\ u(0, t) = u(3, t) = 0 & 0 \leq t \\ u(x, 0) = 7 \sin\left(\frac{\pi x}{3}\right) & 0 \leq x \leq 3 \\ \frac{\partial}{\partial t} u(x, 0) = -9 \sin\left(\frac{\pi x}{3}\right) & 0 \leq x \leq 3 \\ 0 & \text{True} \end{cases}$$

Compute the position of the string at $x=1$ and the moment $t=0.004$.

1) $u(1, 0.004) = **5.****$

2) $u(1, 0.004) = **4.****$

3) $u(1, 0.004) = **2.****$

4) $u(1, 0.004) = **6.****$

5) $u(1, 0.004) = **8.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 28

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{3x^3 - 3y^3}{-4x - 6x^2 + x^3 + 2x^4 + 2y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -49
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -21
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 100, z \geq 8(x^2 + y^2)\}$

- 1) 0.
- 2) 19.5127
- 3) 42.928
- 4) -19.5127
- 5) 31.2204

Exercise 3

Compute the center of curvature for $C(t) = \{-2t^2, 3+t, -t^2\}$ at the point $t = -2$.

- 1) {-24.2, 163., -12.1}
- 2) {-56.8, 228.2, -142.5}
- 3) {8.4, 130.4, 69.4}
- 4) {-7.9, 244.5, 20.5}
- 5) {57.3, 179.3, -44.7}

Exercise 4

Consider the vectorial field $F(x, y) = (-4xy^2 - 1, -4x^2y)$. Compute the potential function for this field whose potential at the origin is 1.

. Calculate the integral of the potential function ϕ over the domain $[0,1]^2$.

- 1) 1.17778
- 2) 0.477778
- 3) 0.277778
- 4) -0.522222
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial^3 u}{\partial t^3}(x, t) = 4 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 5, \quad 0 < t \\ u(0, t) = u(5, t) = 0, \quad \lim_{t \rightarrow \infty} u(x, t) = 0 & 0 \leq t \\ u(x, 0) = 4 \sin(\pi x) - \sin\left(\frac{6\pi x}{5}\right) & 0 \leq x \leq 5 \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x=2$, $t=0.001$, by separation of variables.

- 1) $u(2, 0.001) = \text{****.7***}$
- 2) $u(2, 0.001) = \text{****.9***}$
- 3) $u(2, 0.001) = \text{****.8***}$
- 4) $u(2, 0.001) = \text{****.6***}$
- 5) $u(2, 0.001) = \text{****.2***}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 29

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{x^3 + 2y^3}{-3x - 2x^2 + x^3 - 2x^4 + y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 55
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -46
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 144, z \geq 9(x^2 + y^2)\}$

- 1) 40.0268
- 2) 47.5318
- 3) 70.0469
- 4) 50.0335
- 5) 25.0167

Exercise 3

Compute the center of curvature for $C(t) = \{1 - 3t, 3t^2, -3t^2\}$ at the point $t = -2$.

- 1) {-57.3, -39.65, 116.05}
- 2) {-210.1, 170.45, -94.05}
- 3) {-324.7, 17.65, -132.25}
- 4) {-191., 36.75, -36.75}
- 5) {-171.9, 208.65, -55.85}

Exercise 4

Consider the vectorial field $F(x, y) = (-3x^3y^3 + 3(-3x - 3)x^2y^3 + 6x, 3(-3x - 3)x^3y^2)$. Compute the potential function for this field whose potential at the origin is -5.

. Calculate the value of the potential at the point $p = (-5, -1)$.

- 1) -157.
- 2) 1570.
- 3) 2198.
- 4) 1099.
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x, t) = 4 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 4, \quad 0 < t \\ u(0, t) = u(4, t) = 0 & 0 \leq t \\ u(x, 0) = 5 \sin\left(\frac{3\pi x}{2}\right) & 0 \leq x \leq 4 \\ \frac{\partial}{\partial t} u(x, 0) = \sin\left(\frac{3\pi x}{2}\right) & 0. \leq x \leq 4 \\ 0 & \text{True} \end{cases}$$

Compute the position of the string at $x=2$ and the moment $t=0.009$.

$$1) \quad u(2, 0.009) =$$

$$2) \quad u(2, 0.009) =$$

$$3) \quad u(2, 0.009) =$$

$$4) \quad u(2, 0.009) =$$

$$5) \quad u(2, 0.009) =$$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 30

Exercise 1

Given the function

$f(x,y) = 5x^3 + 5y^3$ defined over the domain $D = 30x^2 + 45y^2 \leq 2100$, compute its absolute maxima and minima.

- 1) The value of the maximum is ****.3 ****
- 2) The value of the maximum is ****.7 ****
- 3) The value of the maximum is ****.8 ****
- 4) The value of the maximum is ****.2 ****
- 5) The value of the maximum is ****.6 ****

Exercise 2

Compute the volume of the domain given by $0 \leq z \leq 3(x^2 + y^2)$ and $(-5 + x)^2 + \frac{1}{4}(-2 + y)^2 \leq 1$

- 1) 570.199
- 2) 2066.94
- 3) 1904.73
- 4) 2044.75
- 5) 483.127

Exercise 3

Compute the mean curvature for $X(u,v) = \{v \cos[u], v \sin[u], v\}$ at the point $(u,v) = (4, 2)$.

- 1) $H(4, 2) = -4.31958$
- 2) $H(4, 2) = -8.69756$
- 3) $H(4, 2) = 0.176777$
- 4) $H(4, 2) = -4.12038$
- 5) $H(4, 2) = 1.89015$

Exercise 4

Consider the vector field $F(x,y,z) = (z, 0, -y)$ and the parameterized surface

$X: [0, 1] \times [-1, 0] \rightarrow \mathbb{R}^3$

$X(u,v) = (2v, v, u + v^2)$

Compute $\int_X F$.

- 1) 1.06667
- 2) -0.833333
- 3) -1.53333
- 4) -4.03333

Exercise 5

$$\begin{cases} \frac{\partial^3 u}{\partial t^3}(x, t) = 25 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0, \quad \lim_{t \rightarrow \infty} u(x, t) = 0 & 0 \leq t \\ u(x, 0) = x^2 & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x=2$, $t=0.001$, by separation of variables by means of a Fourier series of order 1.

1) $u(2, 0.001) = **4.*****$

2) $u(2, 0.001) = **0.*****$

3) $u(2, 0.001) = **3.*****$

4) $u(2, 0.001) = **6.*****$

5) $u(2, 0.001) = **8.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 31

Exercise 1

Given the function

$f(x,y) = 4x^3 - 2y^3$ defined over the domain $D = 6x^2 + 6y^2 \leq 30$, compute its absolute maxima and minima.

- 1) The value of the maximum is ****.0 ****
- 2) The value of the maximum is ****.3 ****
- 3) The value of the maximum is ****.2 ****
- 4) The value of the maximum is ****.1 ****
- 5) The value of the maximum is ****.7 ****

Exercise 2

Compute the integral of $f(x,y,z) = z$

in the domain given by $0 \leq z \leq \sqrt{x^2 + y^2}$ and $\frac{1}{4}(-2+x)^2 + (-3+y)^2 \leq 1$

- 1) 22.4495
- 2) 220.841
- 3) 16.3303
- 4) 138.735
- 5) 44.7677

Exercise 3

Compute the mean curvature for $X(u,v) = \{2u, 3u, v\}$ at the point $(u,v) = (2, 2)$.

- 1) $H(2, 2) = 0.55007$
- 2) $H(2, 2) = 2.92019$
- 3) $H(2, 2) = 8.23184$
- 4) $H(2, 2) = 0$
- 5) $H(2, 2) = 1.64329$

Exercise 4

Consider the vector field $F(x,y,z) = (0, -x, -y)$ and the parameterized surface

$X: [0, 1] \times [-1, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (2, v, 1 + uv)$

Compute $\int_X F$.

- 1) -0.6
- 2) -1.9
- 3) 1.
- 4) 0.

Exercise 5

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x, t) = 16 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = \sin(2x) & 0 \leq x \leq \pi \\ \frac{\partial}{\partial t} u(x, 0) = x^2 & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the position of the string at $x=1$
and the moment $t=0.006$ by means of a Fourier series of order 1.

- 1) $u(1, 0.006) = \text{****.*7**}$
- 2) $u(1, 0.006) = \text{****.*8**}$
- 3) $u(1, 0.006) = \text{****.*1**}$
- 4) $u(1, 0.006) = \text{****.*9**}$
- 5) $u(1, 0.006) = \text{****.*0**}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 32

Exercise 1

Given the function

$f(x,y) = -3x^3 - 3y^3$ defined over the domain $D = 27x^2 + 27y^2 \leq 1944$, compute its absolute maxima and minima.

- 1) The value of the maximum is ****.3 ****
- 2) The value of the maximum is ****.5 ****
- 3) The value of the maximum is ****.2 ****
- 4) The value of the maximum is ****.6 ****
- 5) The value of the maximum is ****.8 ****

Exercise 2

Compute the volume of the domain given by $0 \leq z \leq 3(x^2 + y^2)$ and $\frac{1}{9}(-4+x)^2 + (-4+y)^2 \leq 1$

- 1) 697.52
- 2) 685.888
- 3) 975.465
- 4) 2216.09
- 5) 401.764

Exercise 3

Compute the mean curvature for $X(u,v) = \{2u, u^2, v\}$ at the point $(u,v) = (2, 5)$.

- 1) $H(2, 5) = 0.0223607$
- 2) $H(2, 5) = 1.8945$
- 3) $H(2, 5) = -6.4139$
- 4) $H(2, 5) = -1.38994$
- 5) $H(2, 5) = 5.16792$

Exercise 4

Consider the vector field $F(x,y,z) = (0, 0, x)$ and the parameterized surface

$X: [0, 1] \times [0, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (u^2, 2+u, 2v^2)$

Compute $\int_X F$.

- 1) 3.
- 2) 0.
- 3) -3.5
- 4) 1.9

Exercise 5

$$\begin{cases} \frac{\partial^3 u}{\partial t^3}(x, t) = 9 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 3, \quad 0 < t \\ u(0, t) = u(3, t) = 0, \quad \lim_{t \rightarrow \infty} u(x, t) = 0 & 0 \leq t \\ u(x, 0) = x^2 & 0 \leq x \leq 3 \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x=2$, $t=0.005$, by separation of variables by means of a Fourier series of order 1.

1) $u(2, 0.005) = **2.****$

2) $u(2, 0.005) = **6.****$

3) $u(2, 0.005) = **5.****$

4) $u(2, 0.005) = **7.****$

5) $u(2, 0.005) = **9.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 33

Exercise 1

Given the functions

$$f(x, y) = (3 - 3x + 3x^2 + 3y + 3xy + y^2, -x - 3x^2 - y + 2xy)$$

and

$$g(u, v) = (2 + 2u - 3u^2 + 2uv, -3 - 3u + 3u^2 + 3uv + 3v^2),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p = (1, -1)$.

- 1) -12733.7
- 2) -9504.
- 3) -12259.7
- 4) -3944.76
- 5) -4174.02

Exercise 2

Compute $\int_D (3x + 3y) dx dy$ for $D = \{0 \leq -6y \leq 3, 0 \leq 3x + 4y \leq 7\}$

- 1) -2.625
- 2) 4.375
- 3) 11.8125
- 4) 7.875
- 5) 3.5

Exercise 3

Compute the mean curvature for $X(u, v) = \{\cos[u], \sin[u], v\}$ at the point $(u, v) = (6, 10)$.

- 1) $H(6, 10) = 1.73825$
- 2) $H(6, 10) = 6.72009$
- 3) $H(6, 10) = -3.77072$
- 4) $H(6, 10) = 0.5$
- 5) $H(6, 10) = 5.26746$

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (-y, z, 0)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (2 + 2t, 2 + 2t^2, 2)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) -28.3333 2) -9.33333 3) 17.6667 4) -43.3333

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = 25 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 1, 0 < t \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(1, t) = 0 & 0 \leq t \\ u(x, 0) = x^2 & 0 \leq x \leq 1 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x = \frac{3}{5}$

and the moment $t = 0.003$ by means of a Fourier series of order 1.

$$1) u\left(\frac{3}{5}, 0.003\right) = \text{****.9****}$$

$$2) u\left(\frac{3}{5}, 0.003\right) = \text{****.7****}$$

$$3) u\left(\frac{3}{5}, 0.003\right) = \text{****.8****}$$

$$4) u\left(\frac{3}{5}, 0.003\right) = \text{****.3****}$$

$$5) u\left(\frac{3}{5}, 0.003\right) = \text{****.4****}$$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 34

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{2x^4 + 3y^4}{3x + 3x^2 + x^4 + 6x^5 + 3x^6 - 3y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 5
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 7
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 1, z \geq 12(x^2 + y^2)\}$

- 1) 1.52559
- 2) 0.125595
- 3) -1.87441
- 4) 1.02559
- 5) 0.325595

Exercise 3

Compute the center of curvature for $C(t) = \{t^2, 2t^2, -1 - 3t\}$ at the point $t = -3$.

- 1) {172.7, 182.5, -325.8}
- 2) {27.9, 55.8, -181.}
- 3) {100.3, 37.7, -343.9}
- 4) {-135., -16.6, -36.2}
- 5) {64.1, -16.6, -72.4}

Exercise 4

Consider the vectorial field $F(x, y) = (-2ye^{xy} - 2x - 3, -2xe^{xy})$. Compute the potential function for this field whose potential at the origin is -6.

. Calculate the value of the potential at the point $p = (-1, -9)$.

- 1) -16208.2
- 2) -50247.1
- 3) 30797.9
- 4) -72939.7
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 1, \ 0 < t \\ u(0, t) = u(1, t) = 0 & 0 \leq t \\ u(x, 0) = 3 \sin(3\pi x) + 2 \sin(6\pi x) & 0 \leq x \leq 1 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x = \frac{2}{5}$ and the moment $t = 0.003$.

1) $u\left(\frac{2}{5}, 0.003\right) = \text{****.1***}$

2) $u\left(\frac{2}{5}, 0.003\right) = \text{****.0***}$

3) $u\left(\frac{2}{5}, 0.003\right) = \text{****.2***}$

4) $u\left(\frac{2}{5}, 0.003\right) = \text{****.6***}$

5) $u\left(\frac{2}{5}, 0.003\right) = \text{****.7***}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 35

Exercise 1

Given the function

$f(x,y) = 5x^3 + y^3$ defined over the domain $D = 45x^2 + 3y^2 \leq 1632$, compute its absolute maxima and minima.

- 1) The value of the minimum is ****.3 ****
- 2) The value of the minimum is ****.7 ****
- 3) The value of the minimum is ****.4 ****
- 4) The value of the minimum is ****.1 ****
- 5) The value of the minimum is ****.6 ****

Exercise 2

Compute the volume of the domain given by $0 \leq z \leq 3(x^2 + y^2)$ and $\frac{1}{9}(-3+x)^2 + (-3+y)^2 \leq 1$

- 1) 2529.2
- 2) 579.624
- 3) 71.4137
- 4) 1579.49
- 5) 2371.8

Exercise 3

Compute the mean curvature for $X(u,v) = \{\cos[u], \sin[u], v\}$ at the point $(u,v) = (2, 7)$.

- 1) $H(2, 7) = 8.79361$
- 2) $H(2, 7) = 0.5$
- 3) $H(2, 7) = 7.81658$
- 4) $H(2, 7) = -7.16515$
- 5) $H(2, 7) = 5.23731$

Exercise 4

Consider the vector field $F(x,y,z) = (0, y, -x)$ and the parameterized surface

$X: [0, 1] \times [-1, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (2v^2, 2 + 2v^2, 2u)$

Compute $\int_X F$.

- 1) 0.
- 2) 0.7
- 3) -0.5
- 4) -1.3

Exercise 5

$$\left\{ \begin{array}{ll} \frac{\partial^2 u}{\partial t^2}(x, t) = 25 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 1, \quad 0 < t \\ u(0, t) = u(1, t) = 0 & 0 \leq t \\ u(x, 0) = 9 \sin(\pi x) & 0 \leq x \leq 1 \\ \frac{\partial}{\partial t} u(x, 0) = x^2 & 0 \leq x \leq 1 \\ 0 & \text{True} \end{array} \right.$$

Compute the position of the string at $x = \frac{1}{2}$

and the moment $t = 0.003$ by means of a Fourier series of order 1.

$$1) \quad u\left(\frac{1}{2}, 0.003\right) = **0.*****$$

$$2) \quad u\left(\frac{1}{2}, 0.003\right) = **2.*****$$

$$3) \quad u\left(\frac{1}{2}, 0.003\right) = **8.*****$$

$$4) \quad u\left(\frac{1}{2}, 0.003\right) = **1.*****$$

$$5) \quad u\left(\frac{1}{2}, 0.003\right) = **9.*****$$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 36

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{-3x^3 + 3y^3}{-4x - 4x^2 + x^3 + 4x^4 + 2y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 15
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 21
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 144, z \geq 11(x^2 + y^2)\}$

- 1) 28.6796
- 2) 10.2427
- 3) -14.3398
- 4) 8.19418
- 5) 20.4855

Exercise 3

Compute the mean curvature for $X(u,v) = \{\cos[u], \sin[u], v\}$ at the point $(u,v) = (2, 6)$.

- 1) $H(2, 6) = 5.53013$
- 2) $H(2, 6) = 0.5$
- 3) $H(2, 6) = -4.52212$
- 4) $H(2, 6) = -1.52636$
- 5) $H(2, 6) = -7.51324$

Exercise 4

Consider the vectorial field $F(x, y) = \left(\frac{y(2xy + 3)}{xy + 1} + 2y \log(xy + 1) - 6x + 3, \frac{x(2xy + 3)}{xy + 1} + 2x \log(xy + 1) \right)$

. Compute the potential function for this field whose potential at the origin is 0.

. Calculate the value of the potential at the point $p = (4, 8)$.

- 1) 653.666
- 2) 198.266
- 3) 455.666
- 4) -573.934
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} (5 - 7x)(1+6t+3t^2) \frac{\partial u}{\partial t}(x,t) = (6 + 6t) \frac{\partial u}{\partial x}(x,t) & 0 < x < 3, 0 < t \\ u(x,0) = -3e^{-2\left(5x - \frac{7x^2}{2}\right)} - 2e^{\frac{7x^2}{2}} - 5x & 0 \leq x \leq 3 \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution for this boundary problem at the points $x=1$, $t=0.001$, by means of the technique of separation of variables.

1) $u(1, 0.001) = \text{****.2***}$

2) $u(1, 0.001) = \text{****.5***}$

3) $u(1, 0.001) = \text{****.9***}$

4) $u(1, 0.001) = \text{****.7***}$

5) $u(1, 0.001) = \text{****.8***}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 37

Exercise 1

Given the function

$f(x,y) = -5x^3 - 3y^3$ defined over the domain $D = 15x^2 + 27y^2 \leq 1032$, compute its absolute maxima and minima.

- 1) The value of the maximum is ****.6 ****
- 2) The value of the maximum is ****.1 ****
- 3) The value of the maximum is ****.8 ****
- 4) The value of the maximum is ****.3 ****
- 5) The value of the maximum is ****.4 ****

Exercise 2

Compute the integral of $f(x,y,z) = z$

in the domain given by $0 \leq z \leq \sqrt{x^2 + y^2}$ and $\frac{1}{4}(-2+x)^2 + (-3+y)^2 \leq 1$

- 1) 44.7677
- 2) 159.996
- 3) 175.431
- 4) 193.96
- 5) 31.9255

Exercise 3

Compute the mean curvature for $X(u,v) = \{\cos[u], \sin[u], v\}$ at the point $(u,v) = (5, 8)$.

- 1) $H(5, 8) = -7.38321$
- 2) $H(5, 8) = 0.5$
- 3) $H(5, 8) = -7.98851$
- 4) $H(5, 8) = -0.270968$
- 5) $H(5, 8) = 8.89666$

Exercise 4

Consider the vector field $F(x,y,z) = (x, 0, z)$ and the parameterized surface

$X: [0, 1] \times [-1, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (4, v^2, 2u^2 + uv)$

Compute $\int_X F$.

- 1) 5.46667
- 2) -14.3333
- 3) -5.33333
- 4) -8.33333

Exercise 5

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x, t) = 25 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = 6 \sin(2x) & 0 \leq x \leq \pi \\ \frac{\partial}{\partial t} u(x, 0) = x & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the position of the string at $x=1$
and the moment $t=0.001$ by means of a Fourier series of order 1.

- 1) $u(1, 0.001) = \text{****.***}2*$
- 2) $u(1, 0.001) = \text{****.***}6*$
- 3) $u(1, 0.001) = \text{****.***}8*$
- 4) $u(1, 0.001) = \text{****.***}1*$
- 5) $u(1, 0.001) = \text{****.***}9*$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 38

Exercise 1

Given the functions

$$f(x, y) = (3x^2 + 2y + 2y^2, 3x^2 - 2y - xy)$$

and

$$g(u, v) = (3u + 2u^2 + 3v + 2uv + 2v^2, 1 + 2u + 2u^2 + 2v - 2uv - v^2),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p = (-1, 0)$.

- 1) -6804.
- 2) -10873.
- 3) -4623.28
- 4) -1617.39
- 5) -889.937

Exercise 2

Compute $\int_D (4y) dx dy$ for $D = \{0 \leq 5x + 2y \leq 5, 0 \leq 4x + 4y \leq 4\}$

- 1) -0.6
- 2) 1.5
- 3) 0.
- 4) 0.3
- 5) 1.8

Exercise 3

Compute the center of curvature for $C(t) = \{3t^2, 3t^2, 3+t\}$ at the point $t=2$.

- 1) {207.983, 551.783, -343.8}
- 2) {322.583, 207.983, -744.9}
- 3) {36.0833, 36.0833, -573.}
- 4) {551.783, -479.617, -687.6}
- 5) {437.183, 322.583, -630.3}

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (z, 0, -x)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (3t^2, t + 2t^2, 2 + 2t^2)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) -20.4 2) -17.4 3) -6. 4) 15.6

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = 16 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 4, \quad 0 < t \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(4, t) = 0 & 0 \leq t \\ u(x, 0) = x & 0 \leq x \leq 4 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=1$

and the moment $t=0.007$ by means of a Fourier series of order 2.

1) $u(1, 0.007) = \text{****.5***}$
 2) $u(1, 0.007) = \text{****.3***}$
 3) $u(1, 0.007) = \text{****.9***}$
 4) $u(1, 0.007) = \text{****.6***}$
 5) $u(1, 0.007) = \text{****.7***}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 39

Exercise 1

Given the function

$f(x,y) = 5x^3 - 3y^3$ defined over the domain $D = 45x^2 + 18y^2 \leq 1908$, compute its absolute maxima and minima.

- 1) The value of the minimum is ****.0 ****
- 2) The value of the minimum is ****.3 ****
- 3) The value of the minimum is ****.9 ****
- 4) The value of the minimum is ****.5 ****
- 5) The value of the minimum is ****.7 ****

Exercise 2

Compute the integral of $f(x,y,z) = z$

in the domain given by $0 \leq z \leq 2\sqrt{x^2 + y^2}$ and $(-2 + x)^2 + \frac{1}{4}(-3 + y)^2 \leq 1$

- 1) 507.684
- 2) 144.9
- 3) 480.629
- 4) 179.071
- 5) 790.485

Exercise 3

Compute the mean curvature for $X(u,v) = \{e^v \cos[u], e^v \sin[u], v\}$ at the point $(u,v) = (4, 2)$.

- 1) $H(4, 2) = -5.76715$
- 2) $H(4, 2) = -0.953253$
- 3) $H(4, 2) = 0.000163226$
- 4) $H(4, 2) = 1.34469$
- 5) $H(4, 2) = 4.92986$

Exercise 4

Consider the vector field $F(x,y,z) = (-z, x, 0)$ and the parameterized surface

$X: [0, 1] \times [-1, 0] \rightarrow \mathbb{R}^3$

$X(u,v) = (2 + 2u^2, u, v^2)$

Compute $\int_X F \cdot$

- 1) 6.5
- 2) -4.3
- 3) -1.9
- 4) 1.7

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = 25 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 3, \ 0 < t \\ u(0, t) = u(3, t) = 0 & 0 \leq t \\ u(x, 0) = x^2 & 0 \leq x \leq 3 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=2$
and the moment $t=0.004$ by means of a Fourier series of order 1.

1) $u(2, 0.004) = **8.*****$

2) $u(2, 0.004) = **0.*****$

3) $u(2, 0.004) = **2.*****$

4) $u(2, 0.004) = **3.*****$

5) $u(2, 0.004) = **4.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 40

Exercise 1

Given the functions

$$f(x, y) = (3 + x + x^2 + 3y - y^2, 2 + x - x^2 - 2y - xy + y^2)$$

and

$$g(u, v) = (-2 - 2u - u^2 + 2v + uv + v^2, -3 - 3u^2 + v - 3v^2),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p = (1, -1)$.

- 1) -82.7907
- 2) -254.775
- 3) -405.833
- 4) -300.
- 5) -429.443

Exercise 2

Compute $\int_D (5y) dx dy$ for $D = \{0 \leq -4x - 6y \leq 9, 0 \leq 2x - y \leq 9\}$

- 1) -42.9148
- 2) -42.8148
- 3) -44.5148
- 4) -41.1148
- 5) -42.7148

Exercise 3

Compute the mean curvature for $X(u, v) = \{\cos[u], \sin[u], v\}$ at the point $(u, v) = (6, 6)$.

- 1) $H(6, 6) = 7.29856$
- 2) $H(6, 6) = 0.5$
- 3) $H(6, 6) = 2.38772$
- 4) $H(6, 6) = 5.67432$
- 5) $H(6, 6) = 3.5494$

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (y, 0, x)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (2 + t^2, 2t, 2t + t^2)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) 5.3 2) 3.5 3) 1.4 4) 10.7

Exercise 5

$$\begin{cases} \frac{\partial^3 u}{\partial t^3}(x, t) = 9 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0, \quad \lim_{t \rightarrow \infty} u(x, t) = 0 & 0 \leq t \\ u(x, 0) = x & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x=2$, $t=0.01$, by separation of variables by means of a Fourier series of order 2.

1) $u(2, 0.01) = **1.*****$
 2) $u(2, 0.01) = **2.*****$
 3) $u(2, 0.01) = **3.*****$
 4) $u(2, 0.01) = **4.*****$
 5) $u(2, 0.01) = **6.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 41

Exercise 1

Given the functions

$$f(x, y) = (-x - 2x^2 + y + xy + 2y^2, 2 + x + 2x^2 - 3y + 2xy)$$

and

$$g(u, v) = (2 + 3u - 2u^2 - v - 3v^2, 2 + 2u^2 + v - 2uv),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p = (0, -1)$.

- 1) -1046.03
- 2) -286.193
- 3) -555.
- 4) -709.313
- 5) -429.908

Exercise 2

Compute $\int_D (4y) dx dy$ for $D = \{0 \leq 5x + y \leq 9, 0 \leq -3x + 7y \leq 7\}$

- 1) 9.19695
- 2) 12.9839
- 3) -5.40997
- 4) 5.40997
- 5) 3.24598

Exercise 3

Compute the center of curvature for $C(t) = \{2 - 3t, -2t^2, t^2\}$ at the point $t = -3$.

- 1) {-178., -55.8, 27.9}
- 2) {-124.6, -180.4, -61.1}
- 3) {-249.2, 68.8, -25.5}
- 4) {-53.4, -198.2, 116.9}
- 5) {-320.4, -216., 134.7}

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (0, x, -z)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (2t + t^2, 2t^2, 1)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) 4.96667 2) 2.26667 3) 4.56667 4) 1.66667

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = 16 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 5, 0 < t \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(5, t) = 0 & 0 \leq t \\ u(x, 0) = x & 0 \leq x \leq 5 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=1$

and the moment $t=0.007$ by means of a Fourier series of order 2.

1) $u(1, 0.007) = \text{****.8***}$
 2) $u(1, 0.007) = \text{****.4***}$
 3) $u(1, 0.007) = \text{****.3***}$
 4) $u(1, 0.007) = \text{****.9***}$
 5) $u(1, 0.007) = \text{****.5***}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 42

Exercise 1

Given the functions

$$f(x, y) = (-1 + 3x^2 + 2y - 2xy, -2 - x + x^2 - y + 3xy + y^2)$$

and

$$g(u, v) = (-2 + u - u^2 + 3v + uv - 2v^2, 3 - u - 3u^2 - v - v^2),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p=(0, 0)$.

- 1) -94.
- 2) -172.105
- 3) -125.739
- 4) -175.403
- 5) -29.7458

Exercise 2

Compute $\int_D (x + 2y) dx dy$ for $D = \{0 \leq x - 2y \leq 8, 0 \leq -7x + 2y \leq 2\}$

- 1) -9.45556
- 2) -6.95556
- 3) -7.55556
- 4) -5.65556
- 5) -6.55556

Exercise 3

Compute the center of curvature for $C(t) = \{-3t^2, -3t^2, -3 + 3t\}$ at the point $t=1$.

- 1) {-34.05, -25.95, -8.1}
- 2) {-25.95, -28.65, -45.9}
- 3) {14.55, -1.65, -13.5}
- 4) {-9.75, -9.75, -27.}
- 5) {-17.85, 14.55, -5.4}

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (-z, 0, 0)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (2t^2, 2t + 2t^2, 2t)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) -2.66667 2) -8.06667 3) 1.23333 4) -7.76667

Exercise 5

$$\begin{cases} (-3 + 2x)(1+6t+t^2) \frac{\partial u}{\partial t}(x, t) = (6 + 2t) \frac{\partial u}{\partial x}(x, t) & 0 < x < \pi, 0 < t \\ u(x, 0) = 2e^{3(x^2-3x)} - 2e^{x^2-3x} & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution for this boundary problem at the points $x=1$, $t=0.003$, by means of the technique of separation of variables.

1) $u(1, 0.003) = \text{****.9***}$
 2) $u(1, 0.003) = \text{****.7***}$
 3) $u(1, 0.003) = \text{****.5***}$
 4) $u(1, 0.003) = \text{****.0***}$
 5) $u(1, 0.003) = \text{****.2***}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 43

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{x^3 + y^3}{-6x - 6x^2 + x^3 - 6x^4 + 3x^5 + 3y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 9
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -27
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 196, z \geq 14(x^2 + y^2)\}$

- 1) 65.8054
- 2) 46.0638
- 3) 10.9676
- 4) -4.38703
- 5) 21.9351

Exercise 3

Compute the center of curvature for $C(t) = \{t^2, -1 - 3t, -2t^2\}$ at the point $t=1$.

- 1) {3.9, 5.66667, -7.8}
- 2) {6., 1.46667, -14.1}
- 3) {0.4, 8.46667, -2.2}
- 4) {5.3, 2.86667, -5.7}
- 5) {1.8, 0.0666667, -5.}

Exercise 4

Consider the vectorial field $F(x, y) = (-2xy^2 \sin(xy) + 2y \cos(xy) - 2x, 2x \cos(xy) - 2x^2y \sin(xy))$. Compute the potential function for this field whose potential at the origin is -4.

. Calculate the integral of the potential function ϕ over the domain $[0,1]^2$.

- 1) 2.90644
- 2) -8.69356
- 3) -3.89356
- 4) 6.90644
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial^3 u}{\partial t^3}(x, t) = 4 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0, \quad \lim_{t \rightarrow \infty} u(x, t) = 0 & 0 \leq t \\ u(x, 0) = 5 \sin(6x) - 6 \sin(x) & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x = 2$, $t = 0.002$, by separation of variables.

- 1) $u(2, 0.002) = **1.*****$
- 2) $u(2, 0.002) = **4.*****$
- 3) $u(2, 0.002) = **3.*****$
- 4) $u(2, 0.002) = **0.*****$
- 5) $u(2, 0.002) = **8.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 44

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{-2x^4 + 2y^4}{2x + 3x^2 + x^4 + 2x^5 - 2x^6 - y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 46
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 30
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 36, z \geq 5(x^2 + y^2)\}$

- 1) 31.1453
- 2) -5.56166
- 3) 17.7973
- 4) 4.44933
- 5) 11.1233

Exercise 3

Compute the center of curvature for $C(t) = \{2t^2, 3+2t, -2t^2\}$ at the point $t = -3$.

- 1) {185., 87., 293.5}
- 2) {-119.5, 522., 337.}
- 3) {-32.5, 652.5, -11.}
- 4) {54.5, 435., -54.5}
- 5) {-293.5, 826.5, 119.5}

Exercise 4

Consider the vectorial field $F(x, y) = (3x^2(y-1)y^3 + 4x + y, x^3y^3 + 3x^3(y-1)y^2)$. Compute the potential function for this field whose potential at the origin is 1.

. Calculate the integral of the potential function ϕ over the domain $[0,1]^2$.

- 1) 1.65417
- 2) 1.45417
- 3) -0.645833
- 4) 4.65417
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = 7 \cos(6x) - 3 \cos(x) & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=2$ and the moment $t=0.008$.

- 1) $u(2, 0.008) = **8.****$
- 2) $u(2, 0.008) = **0.****$
- 3) $u(2, 0.008) = **5.****$
- 4) $u(2, 0.008) = **2.****$
- 5) $u(2, 0.008) = **7.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 45

Exercise 1

Given the function

$f(x,y) = 5x^3 - 3y^3$ defined over the domain $D = 30x^2 + 27y^2 \leq 1452$, compute its absolute maxima and minima.

- 1) The value of the minimum is ****.7 ****
- 2) The value of the minimum is ****.3 ****
- 3) The value of the minimum is ****.2 ****
- 4) The value of the minimum is ****.5 ****
- 5) The value of the minimum is ****.6 ****

Exercise 2

Compute the integral of $f(x,y,z) = z$

in the domain given by $0 \leq z \leq 2\sqrt{x^2 + y^2}$ and $\frac{1}{4}(-4+x)^2 + \frac{1}{9}(-4+y)^2 \leq 1$

- 1) 6204.51
- 2) 1328.89
- 3) 6493.94
- 4) 4073.86
- 5) 952.085

Exercise 3

Compute the mean curvature for $X(u,v) = \{v \cos[u], v \sin[u], v\}$ at the point $(u,v) = (5, 10)$.

- 1) $H(5, 10) = -2.73741$
- 2) $H(5, 10) = 1.85802$
- 3) $H(5, 10) = 0.0353553$
- 4) $H(5, 10) = 5.20372$
- 5) $H(5, 10) = 2.31803$

Exercise 4

Consider the vector field $F(x,y,z) = (z, -y, 0)$ and the parameterized surface

$X: [0, 1] \times [-1, 0] \rightarrow \mathbb{R}^3$

$X(u,v) = (2u^2 + v, 2u^2, 3v)$

Compute $\int_X F \cdot$

- 1) 1.5
- 2) 4.8
- 3) -1.8
- 4) -3.

Exercise 5

$$\begin{cases} \frac{\partial^3 u}{\partial t^3}(x, t) = 25 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0, \quad \lim_{t \rightarrow \infty} u(x, t) = 0 & 0 \leq t \\ u(x, 0) = x & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x=2$, $t=0.003$, by separation of variables by means of a Fourier series of order 2.

1) $u(2, 0.003) = **6.****$

2) $u(2, 0.003) = **3.****$

3) $u(2, 0.003) = **2.****$

4) $u(2, 0.003) = **4.****$

5) $u(2, 0.003) = **7.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 46

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{3x^3 - y^3}{3x + 3x^2 + x^3 + x^4 - y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -40
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -24
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 81, z \geq 2(x^2 + y^2)\}$

- 1) -30.9412
- 2) 80.4472
- 3) 61.8825
- 4) 123.765
- 5) 55.6942

Exercise 3

Compute the center of curvature for $C(t) = \{-t^2, -2t^2, -3 - 3t\}$ at the point $t=1$.

- 1) {-8.1, -12.7, 2.96667}
- 2) {-9.5, -11.3, 1.56667}
- 3) {-3.9, -7.8, 3.66667}
- 4) {0.3, -2.2, 5.76667}
- 5) {0.3, -5., 5.06667}

Exercise 4

Consider the vectorial field $F(x, y) = \left(\frac{(-2x - 3)y}{xy + 1} - 2 \log(xy + 1) - 3, \frac{(-2x - 3)x}{xy + 1} \right)$

). Compute the potential function for this field whose potential at the origin is 2.

. Calculate the integral of the potential function ϕ over the domain $[0,1]^2$.

- 1) -3.89887
- 2) -2.79887
- 3) 2.00113
- 4) -0.398873
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x, t) = 4 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \ 0 < t \\ u(0, t) = u(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = -\sin(5x) & 0 \leq x \leq \pi \\ \frac{\partial}{\partial t} u(x, 0) = 3 \sin(5x) & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the position of the string at $x=2$ and the moment $t=0.01$.

- 1) $u(2, 0.01) = \text{****.0***}$
- 2) $u(2, 0.01) = \text{****.2***}$
- 3) $u(2, 0.01) = \text{****.9***}$
- 4) $u(2, 0.01) = \text{****.6***}$
- 5) $u(2, 0.01) = \text{****.5***}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 47

Exercise 1

Given the functions

$$f(x, y) = (-1 + x + 3x^2 - 3y - xy + 2y^2, 2 - 2x^2 - xy + y^2)$$

and

$$g(u, v) = (2u - 3u^2 + uv - 2v^2, 3 + 2u - u^2 + v + v^2),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p=(1, 0)$.

- 1) 72.2691
- 2) 107.444
- 3) 79.6836
- 4) 143.624
- 5) 92.

Exercise 2

Compute $\int_D (x + 2y) dx dy$ for $D = \{0 \leq -x + 2y \leq 4, 0 \leq -7x + 4y \leq 8\}$

- 1) 2.56
- 2) -8.88178×10^{-16}
- 3) 3.84
- 4) 6.4
- 5) 15.36

Exercise 3

Compute the center of curvature for $C(t) = \{-2 - 2t, -3t^2, 3t^2\}$ at the point $t=1$.

- 1) {34., -9.33333, 9.33333}
- 2) {54.4, 21.2667, 5.93333}
- 3) {47.6, -39.9333, -4.26667}
- 4) {6.8, -5.93333, 33.1333}
- 5) {23.8, 17.8667, 29.7333}

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (y, z, 0)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (1, t + t^2, 2t + t^2)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) 0.166667 2) 0.966667 3) -0.233333 4) 3.766667

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = 9(-6 - 8t) \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 1, 0 < t \\ u(0, t) = u(1, t) = 0 & 0 \leq t \\ u(x, 0) = 4 \sin(2\pi x) - 7 \sin(3\pi x) & 0 \leq x \leq 1 \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x =$

$\frac{7}{10}$, $t = 0.01$, by separation of variables.

1) $u\left(\frac{7}{10}, 0.01\right) = 2*****$
 2) $u\left(\frac{7}{10}, 0.01\right) = 3*****$
 3) $u\left(\frac{7}{10}, 0.01\right) = 4*****$
 4) $u\left(\frac{7}{10}, 0.01\right) = 6*****$
 5) $u\left(\frac{7}{10}, 0.01\right) = 8*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 48

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{x^3 + y^3}{9x + 3x^2 + x^3 - 3x^4 + 6x^5 - 3y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -14
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 28
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 169, z \geq 7(x^2 + y^2)\}$

- 1) 49.0307
- 2) 0.
- 3) 101.833
- 4) -33.9443
- 5) 37.7159

Exercise 3

Compute the mean curvature for $X(u,v) = \{3u, 2u^2, v\}$ at the point $(u,v) = (4, 1)$.

- 1) $H(4, 1) = -0.841589$
- 2) $H(4, 1) = 5.55282$
- 3) $H(4, 1) = 5.86428$
- 4) $H(4, 1) = 2.48965$
- 5) $H(4, 1) = 0.00139086$

Exercise 4

Consider the vectorial field $F(x, y) = (xy^2(-e^{xy}) - y e^{xy} - 4x, x^2y(-e^{xy}) - x e^{xy} + x)$. Compute the potential function for this field whose potential at the origin is -2.

. Calculate the integral of the potential function ϕ over the domain $[0,1]^2$.

- 1) -4.66705
- 2) 0.132954
- 3) -3.06705
- 4) -6.66705
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial^3 u}{\partial t^3}(x, t) = 25 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 2, \quad 0 < t \\ u(0, t) = u(2, t) = 0, \quad \lim_{t \rightarrow \infty} u(x, t) = 0 & 0 \leq t \\ u(x, 0) = 9 \sin\left(\frac{\pi x}{2}\right) + 5 \sin\left(\frac{3\pi x}{2}\right) & 0 \leq x \leq 2 \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x = \frac{6}{5}$, $t = 0.006$, by separation of variables.

1) $u\left(\frac{6}{5}, 0.006\right) = **0.*****$

2) $u\left(\frac{6}{5}, 0.006\right) = **7.*****$

3) $u\left(\frac{6}{5}, 0.006\right) = **3.*****$

4) $u\left(\frac{6}{5}, 0.006\right) = **2.*****$

5) $u\left(\frac{6}{5}, 0.006\right) = **5.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 49

Exercise 1

Given the function

$f(x,y) = 5x^3 - y^3$ defined over the domain $D = 30x^2 + 9y^2 \leq 804$, compute its absolute maxima and minima.

- 1) The value of the maximum is *****.5 *****
- 2) The value of the maximum is *****.0 *****
- 3) The value of the maximum is *****.4 *****
- 4) The value of the maximum is *****.8 *****
- 5) The value of the maximum is *****.3 *****

Exercise 2

Compute the volume of the domain given by $0 \leq z \leq 3(x^2 + y^2)$ and $\frac{1}{4}(-2 + x)^2 + (-5 + y)^2 \leq 1$

- 1) 2386.03
- 2) 2097.75
- 3) 498.45
- 4) 345.048
- 5) 570.199

Exercise 3

Compute the mean curvature for $X(u,v) = \{\cos[u], \sin[u], v\}$ at the point $(u,v) = (1, 6)$.

- 1) $H(1, 6) = -4.64932$
- 2) $H(1, 6) = -2.75729$
- 3) $H(1, 6) = 0.5$
- 4) $H(1, 6) = 3.18488$
- 5) $H(1, 6) = 6.07966$

Exercise 4

Consider the vector field $F(x,y,z) = (0, -y, -z)$ and the parameterized surface

$X: [0, 1] \times [-1, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (2v, u + u^2, 2v)$

Compute $\int_X F$.

- 1) -0.8
- 2) 2.3
- 3) 2.8
- 4) 0.

Exercise 5

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x, t) = 25 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = 8 \sin(x) & 0 \leq x \leq \pi \\ \frac{\partial}{\partial t} u(x, 0) = x & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the position of the string at $x=2$
and the moment $t=0.007$ by means of a Fourier series of order 1.

- 1) $u(2, 0.007) = **8.****$
- 2) $u(2, 0.007) = **1.****$
- 3) $u(2, 0.007) = **2.****$
- 4) $u(2, 0.007) = **7.****$
- 5) $u(2, 0.007) = **6.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 50

Exercise 1

Given the functions

$$f(x, y) = (3 + 3x + 2x^2 - 2y + xy, -3x^2 - 2y + xy + y^2)$$

and

$$g(u, v) = (u + 2u^2 - v - 3uv - v^2, 2 - u - 3u^2 + 2v + 3v^2),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p = (-1, -1)$.

- 1) -14614.3
- 2) -2136.65
- 3) -10350.
- 4) -3334.18
- 5) -17478.4

Exercise 2

Compute $\int_D (6x) dx dy$ for $D = \{0 \leq 9x + y \leq 9, 0 \leq 8x - 6y \leq 3\}$

- 1) 0.360328
- 2) 0.360328
- 3) 1.68153
- 4) 1.20109
- 5) 3.12284

Exercise 3

Compute the mean curvature for $X(u, v) = \{\cos[u], \sin[u], v\}$ at the point $(u, v) = (1, 8)$.

- 1) $H(1, 8) = 4.29967$
- 2) $H(1, 8) = -3.1367$
- 3) $H(1, 8) = -3.23173$
- 4) $H(1, 8) = 0.5$
- 5) $H(1, 8) = 7.45078$

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (-y, 0, x)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (2t + t^2, 3t^2, 2t^2)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) 1.16667 2) -2.23333 3) 5.06667 4) 5.16667

Exercise 5

$$\begin{cases} (8 - x)(1 + 6t + 2t^2) \frac{\partial u}{\partial t}(x, t) = (6 + 4t) \frac{\partial u}{\partial x}(x, t) & 0 < x < 4, 0 < t \\ u(x, 0) = 2e^{-2\left(8x - \frac{x^2}{2}\right)} - 3e^{3\left(8x - \frac{x^2}{2}\right)} & 0 \leq x \leq 4 \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution for this boundary problem at the points $x=1$, $t=0.002$, by means of the technique of separation of variables.

1) $u(1, 0.002) = 7*****.****$
 2) $u(1, 0.002) = 2*****.****$
 3) $u(1, 0.002) = 1*****.****$
 4) $u(1, 0.002) = 9*****.****$
 5) $u(1, 0.002) = 8*****.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 51

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{2x^3 + y^3}{9x + 9x^2 + x^3 - 3x^4 - 3y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 29
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -62
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 9, z \geq 11(x^2 + y^2)\}$

- 1) 1.26592
- 2) 0.759552
- 3) 1.13933
- 4) 2.02547
- 5) 1.6457

Exercise 3

Compute the center of curvature for $C(t) = \{-2t^2, -3+t, -2t^2\}$ at the point $t=3$.

- 1) {-54.125, -867., -54.125}
- 2) {119.275, -433.5, -400.925}
- 3) {292.675, -86.7, 379.375}
- 4) {552.775, -953.7, 119.275}
- 5) {466.075, -1127.1, 205.975}

Exercise 4

Consider the vectorial field $F(x, y) = (-y \sin(xy) - 4x, -x \sin(xy))$. Compute the potential function for this field whose potential at the origin is 4. Calculate the value of the potential at the point $p=(-10, -10)$.

- 1) 217.562
- 2) -196.138
- 3) -905.338
- 4) -294.638
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 3, 0 < t \\ u(0, t) = u(3, t) = 0 & 0 \leq t \\ u(x, 0) = 5 \sin\left(\frac{\pi x}{3}\right) + \sin(\pi x) & 0 \leq x \leq 3 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=1$ and the moment $t=0.002$.

1) $u(1, 0.002) = **3.*****$

2) $u(1, 0.002) = **4.*****$

3) $u(1, 0.002) = **1.*****$

4) $u(1, 0.002) = **8.*****$

5) $u(1, 0.002) = **0.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 52

Exercise 1

Given the function

$f(x,y) = -2x^3 - 2y^3$ defined over the domain $D = 6x^2 + 6y^2 \leq 48$, compute its absolute maxima and minima.

- 1) The value of the maximum is ****.9 ****
- 2) The value of the maximum is ****.2 ****
- 3) The value of the maximum is ****.0 ****
- 4) The value of the maximum is ****.7 ****
- 5) The value of the maximum is ****.8 ****

Exercise 2

Compute the integral of $f(x,y,z) = z$

in the domain given by $0 \leq z \leq \sqrt{x^2 + y^2}$ and $\frac{1}{9}(-5+x)^2 + \frac{1}{4}(-3+y)^2 \leq 1$

- 1) 26.9604
- 2) 511.492
- 3) 848.311
- 4) 351.073
- 5) 1516.67

Exercise 3

Compute the mean curvature for $X(u,v) = \{u, 2u, v\}$ at the point $(u,v) = (2, 8)$.

- 1) $H(2, 8) = 0$
- 2) $H(2, 8) = -1.73702$
- 3) $H(2, 8) = -5.90872$
- 4) $H(2, 8) = -3.22333$
- 5) $H(2, 8) = -4.28974$

Exercise 4

Consider the vector field $F(x,y,z) = (-x, 0, 0)$ and the parameterized surface

$X: [0, 1] \times [-1, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (u^2 + v, 3v, 2u^2 + 2v)$

Compute $\int_X F$.

- 1) 16.2
- 2) 6.
- 3) -4.8
- 4) 20.4

Exercise 5

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(x, t) = 4 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 2, \quad 0 < t \\ u(0, t) = u(2, t) = 0 & 0 \leq t \\ u(x, 0) = 8 \sin(\pi x) & 0 \leq x \leq 2 \\ \frac{\partial}{\partial t} u(x, 0) = x & 0 \leq x \leq 2 \\ 0 & \text{True} \end{cases}$$

Compute the position of the string at $x = \frac{3}{2}$

and the moment $t = 0.004$ by means of a Fourier series of order 1.

1) $u\left(\frac{3}{2}, 0.004\right) = \text{****.***1*}$

2) $u\left(\frac{3}{2}, 0.004\right) = \text{****.***3*}$

3) $u\left(\frac{3}{2}, 0.004\right) = \text{****.***5*}$

4) $u\left(\frac{3}{2}, 0.004\right) = \text{****.***8*}$

5) $u\left(\frac{3}{2}, 0.004\right) = \text{****.***9*}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 53

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{x^4 + y^4}{x + x^2 + x^4 + 2x^5 + 2x^6 - y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 2
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 10
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 1, z \geq 13(x^2 + y^2)\}$

- 1) 1.4163
- 2) -1.8837
- 3) 0.516301
- 4) 1.8163
- 5) 0.116301

Exercise 3

Compute the center of curvature for $C(t) = \{-3t^2, t, -t^2\}$ at the point $t=1$.

- 1) {-9.15, -40., -3.05}
- 2) {-37.15, -60., -31.05}
- 3) {14.85, -76., -15.05}
- 4) {-25.15, -64., -19.05}
- 5) {14.85, -48., 20.95}

Exercise 4

Consider the vectorial field $F(x, y) = (y - y \cos(xy), -x \cos(xy))$

). Compute the potential function for this field whose potential at the origin is -6.

. Calculate the integral of the potential function ϕ over the domain $[0,1]^2$.

- 1) -32.1398
- 2) -6.23981
- 3) -8.33981
- 4) -19.5398
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 1, 0 < t \\ u(0, t) = u(1, t) = 0 & 0 \leq t \\ u(x, 0) = 7 \sin(2\pi x) + 4 \sin(5\pi x) & 0 \leq x \leq 1 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x = \frac{1}{5}$ and the moment $t = 0.007$.

1) $u\left(\frac{1}{5}, 0.007\right) = **4.*****$

2) $u\left(\frac{1}{5}, 0.007\right) = **9.*****$

3) $u\left(\frac{1}{5}, 0.007\right) = **6.*****$

4) $u\left(\frac{1}{5}, 0.007\right) = **5.*****$

5) $u\left(\frac{1}{5}, 0.007\right) = **8.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 54

Exercise 1

Given the function

$f(x,y) = -2x^3 - 5y^3$ defined over the domain $D = 6x^2 + 45y^2 \leq 1644$, compute its absolute maxima and minima.

- 1) The value of the maximum is ****.8 ***
- 2) The value of the maximum is ****.7 ***
- 3) The value of the maximum is ****.5 ***
- 4) The value of the maximum is ****.0 ***
- 5) The value of the maximum is ****.9 ***

Exercise 2

Compute the volume of the domain given by $0 \leq z \leq 3(x^2 + y^2)$ and $\frac{1}{9}(-5 + x)^2 + (-3 + y)^2 \leq 1$

- 1) 4668.62
- 2) 4627.54
- 3) 1032.01
- 4) 66.4322
- 5) 377.131

Exercise 3

Compute the mean curvature for $X(u,v) = \{v^2 \cos[u], v^2 \sin[u], v\}$ at the point $(u,v) = (4, 7)$.

- 1) $H(4, 7) = 7.11923$
- 2) $H(4, 7) = 8.84859$
- 3) $H(4, 7) = 3.20291$
- 4) $H(4, 7) = 0.000365351$
- 5) $H(4, 7) = 6.36999$

Exercise 4

Consider the vector field $F(x,y,z) = (-x, -y, z)$ and the parameterized surface

$X: [0, 1] \times [0, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (2u, u, 2u + 2uv)$

Compute $\int_X F$.

- 1) 0.
- 2) 1.4
- 3) 0.4
- 4) 0.6

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = 4 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 5, 0 < t \\ u(0, t) = u(5, t) = 0 & 0 \leq t \\ u(x, 0) = x & 0 \leq x \leq 5 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=4$
and the moment $t=0.001$ by means of a Fourier series of order 2.

1) $u(4, 0.001) = **4.*****$

2) $u(4, 0.001) = **0.*****$

3) $u(4, 0.001) = **1.*****$

4) $u(4, 0.001) = **3.*****$

5) $u(4, 0.001) = **5.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 55

Exercise 1

Given the functions

$$f(x, y) = (-2x - x^2 - y + xy - y^2, -2 + 2x - 3x^2 + 2y - 3xy - 3y^2)$$

and

$$g(u, v) = (1 - u + 3u^2 - 3v + 3uv + v^2, 1 + 3u - 2u^2 + 3v + uv),$$

compute the determinant of the Jacobian matrix of the composition $g \circ f$ at the point $p = (0, -1)$.

- 1) 1940.75
- 2) 1805.5
- 3) 5837.56
- 4) 3886.
- 5) 2935.2

Exercise 2

Compute $\int_D (3y) dx dy$ for $D = \{0 \leq 4x - 4y \leq 6, 0 \leq 8x - 6y \leq 2\}$

- 1) -13.25
- 2) -11.25
- 3) -11.55
- 4) -11.05
- 5) -10.25

Exercise 3

Compute the center of curvature for $C(t) = \{3t^2, -t^2, -1 - 3t\}$ at the point $t = 3$.

- 1) {190.05, 8.45, 394.9}
- 2) {-204.85, -278.75, 574.4}
- 3) {333.65, 116.15, 502.6}
- 4) {10.55, -99.25, 71.8}
- 5) {82.35, -27.45, 359.}

Exercise 4

Consider the vector field $\mathbf{F}(x, y, z) = (x, z, 0)$ and the parameterized curve

$$\sigma: [-1, 0] \rightarrow \mathbb{R}^3$$

$$\sigma(t) = (1 + 2t, 3, 2)$$

Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{r}$.

1) 0. 2) 2.7 3) 1.3 4) -3.1

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = 16 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = x & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=1$

and the moment $t=0.009$ by means of a Fourier series of order 2.

1) $u(1, 0.009) = \text{****.4***}$
 2) $u(1, 0.009) = \text{****.0***}$
 3) $u(1, 0.009) = \text{****.5***}$
 4) $u(1, 0.009) = \text{****.9***}$
 5) $u(1, 0.009) = \text{****.7***}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 56

Exercise 1

Given the function

$f(x,y) = -x^3 + 3y^3$ defined over the domain $D = 9x^2 + 18y^2 \leq 612$, compute its absolute maxima and minima.

- 1) The value of the minimum is *****.9 *****
- 2) The value of the minimum is *****.7 *****
- 3) The value of the minimum is *****.5 *****
- 4) The value of the minimum is *****.2 *****
- 5) The value of the minimum is *****.8 *****

Exercise 2

Compute the volume of the domain given by $0 \leq z \leq 3(x^2 + y^2)$ and $\frac{1}{4}(-2 + x)^2 + (-4 + y)^2 \leq 1$

- 1) 83.3621
- 2) 506.032
- 3) 111.328
- 4) 400.553
- 5) 1489.72

Exercise 3

Compute the mean curvature for $X(u,v) = \{v^2 \cos[u], v^2 \sin[u], v\}$ at the point $(u,v) = (1, 8)$.

- 1) $H(1, 8) = -6.13384$
- 2) $H(1, 8) = 0.000244613$
- 3) $H(1, 8) = 5.35192$
- 4) $H(1, 8) = 5.82872$
- 5) $H(1, 8) = 4.87027$

Exercise 4

Consider the vector field $F(x,y,z) = (-x, 0, 0)$ and the parameterized surface

$X: [0, 1] \times [0, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (u^2, uv, 2v^2)$

Compute $\int_X F$.

- 1) 2.25556
- 2) -0.444444
- 3) 2.95556
- 4) -1.74444

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 3, \quad 0 < t \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(3, t) = 0 & 0 \leq t \\ u(x, 0) = 5 \cos\left(\frac{4\pi x}{3}\right) - 3 \cos\left(\frac{8\pi x}{3}\right) & 0 \leq x \leq 3 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=2$ and the moment $t=0.003$.

1) $u(2, 0.003) = **9.****$

2) $u(2, 0.003) = **1.****$

3) $u(2, 0.003) = **0.****$

4) $u(2, 0.003) = **6.****$

5) $u(2, 0.003) = **3.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 57

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{-x^4 - 2y^4}{-2x - 2x^2 + x^4 - 2x^5 - 2x^6 + y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -7
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -33
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 64, z \geq 6(x^2 + y^2)\}$

- 1) 16.5818
- 2) -16.5818
- 3) 9.9491
- 4) 28.1891
- 5) 49.7455

Exercise 3

Compute the center of curvature for $C(t) = \{-2t^2, -3t, t^2\}$ at the point $t=1$.

- 1) {-8.5, 1.76667, -0.3}
- 2) {-7.8, 6.66667, 3.9}
- 3) {-3.6, 10.1667, 0.4}
- 4) {-7.1, 4.56667, 2.5}
- 5) {-9.2, 10.1667, 7.4}

Exercise 4

Consider the vectorial field $F(x, y) = (2x(2y+3)y^2 + 2x + 3, 2x^2y^2 + 2x^2y(2y+3))$. Compute the potential function for this field whose potential at the origin is 4.

. Calculate the integral of the potential function ϕ over the domain $[0,1]^2$.

- 1) 6.33333
- 2) 12.3333
- 3) -14.6667
- 4) -3.26667
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 3, \quad 0 < t \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(3, t) = 0 & 0 \leq t \\ u(x, 0) = -7 \cos\left(\frac{\pi x}{3}\right) - 7 \cos\left(\frac{7\pi x}{3}\right) & 0 \leq x \leq 3 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=2$ and the moment $t=0.009$.

1) $u(2, 0.009) = **4.*****$

2) $u(2, 0.009) = **1.*****$

3) $u(2, 0.009) = **5.*****$

4) $u(2, 0.009) = **6.*****$

5) $u(2, 0.009) = **9.*****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 58

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{x^3 + y^3}{3x + x^2 + x^3 - x^4 - 2x^5 - y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to -58
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 28
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 169, z \geq 4(x^2 + y^2)\}$

- 1) 72.3053
- 2) 65.7321
- 3) 6.57321
- 4) 72.3053
- 5) -52.5857

Exercise 3

Compute the center of curvature for $C(t) = \{-t^2, t^2, 1+2t\}$ at the point $t = -3$.

- 1) {4.7, 17.1, 87.2}
- 2) {-93.4, -26.5, 185.3}
- 3) {-28., 28., 109.}
- 4) {70.1, 82.5, 130.8}
- 5) {70.1, -70.1, 130.8}

Exercise 4

Consider the vectorial field $F(x, y) = (-12x - 3y, -3x)$. Compute the potential function for this field whose potential at the origin is 3.

. Calculate the value of the potential at the point $p = (10, -6)$.

- 1) -542.1
- 2) -417.
- 3) -83.4
- 4) -458.7
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial^3 u}{\partial t^3}(x, t) = 4 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \quad 0 < t \\ u(0, t) = u(\pi, t) = 0, \quad \lim_{t \rightarrow \infty} u(x, t) = 0 & 0 \leq t \\ u(x, 0) = \sin(x) + 3 \sin(8x) & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the value of the solution of this boundary problem at the point $x = 1$, $t = 0.009$, by separation of variables.

- 1) $u(1, 0.009) = **5.****$
- 2) $u(1, 0.009) = **9.****$
- 3) $u(1, 0.009) = **3.****$
- 4) $u(1, 0.009) = **2.****$
- 5) $u(1, 0.009) = **8.****$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 59

Exercise 1

Study the limit, $\lim_{(x,y) \rightarrow (0,0)} \frac{-3x^4 + 3y^4}{-2x - x^2 + x^4 + x^5 + x^6 + y}$.

- 1) The limit exists.
- 2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 24
- 3) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit equal to 45
- 4) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D = \{x^2 + y^2 + z^2 \leq 36, z \geq 10(x^2 + y^2)\}$

- 1) 5.608
- 2) 2.804
- 3) 10.6552
- 4) 3.3648
- 5) 11.7768

Exercise 3

Compute the center of curvature for $C(t) = \{t^2, 1 - 3t, 2t^2\}$ at the point $t = -3$.

- 1) {27.9, -179., 55.8}
- 2) {153.2, -322.2, 127.4}
- 3) {81.6, -143.2, 199.}
- 4) {-115.3, -125.3, -51.6}
- 5) {-133.2, -71.6, 20.}

Exercise 4

Consider the vectorial field $F(x, y) = (2y^2 \sin(xy) - 1, 2xy \sin(xy) - 2 \cos(xy))$. Compute the potential function for this field whose potential at the origin is 4.

. Calculate the integral of the potential function ϕ over the domain $[0,1]^2$.

- 1) 8.1806
- 2) 2.9806
- 3) 2.5806
- 4) 0.780605
- 5) The vector field is not conservative.

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < 5, \quad 0 < t \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(5, t) = 0 & 0 \leq t \\ u(x, 0) = 5 \cos\left(\frac{7\pi x}{5}\right) - 9 \cos\left(\frac{8\pi x}{5}\right) & 0 \leq x \leq 5 \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=4$ and the moment $t=0.01$.

- 1) $u(4, 0.01) = \text{****.3****}$
- 2) $u(4, 0.01) = \text{****.1****}$
- 3) $u(4, 0.01) = \text{****.0****}$
- 4) $u(4, 0.01) = \text{****.8****}$
- 5) $u(4, 0.01) = \text{****.9****}$

Further Mathematics - Degree in Engineering - 2025/2026

Final Training Exam - January Call - Hand for serial number: 60

Exercise 1

Given the function

$f(x,y) = 2x^3 + 2y^3$ defined over the domain $D = 6x^2 + 9y^2 \leq 105$, compute its absolute maxima and minima.

- 1) The value of the minimum is *****.9 *****
- 2) The value of the minimum is *****.8 *****
- 3) The value of the minimum is *****.4 *****
- 4) The value of the minimum is *****.5 *****
- 5) The value of the minimum is *****.1 *****

Exercise 2

Compute the volume of the domain given by $0 \leq z \leq 3(x^2 + y^2)$ and $(-5 + x)^2 + \frac{1}{4}(-3 + y)^2 \leq 1$

- 1) 2711.15
- 2) 2935.82
- 3) 2837.33
- 4) 9.77956
- 5) 664.447

Exercise 3

Compute the mean curvature for $X(u,v) = \{v^2 \cos[u], v^2 \sin[u], v\}$ at the point $(u,v) = (4, 5)$.

- 1) $H(4, 5) = 4.42808$
- 2) $H(4, 5) = -3.3875$
- 3) $H(4, 5) = 8.01924$
- 4) $H(4, 5) = -2.28094$
- 5) $H(4, 5) = 0.00100489$

Exercise 4

Consider the vector field $F(x,y,z) = (0, 0, x)$ and the parameterized surface

$X: [0, 1] \times [0, 1] \rightarrow \mathbb{R}^3$

$X(u,v) = (2uv, 2v^2, 2v)$

Compute $\int_X F$.

- 1) 2.
- 2) -0.8
- 3) 3.
- 4) -3.

Exercise 5

$$\begin{cases} \frac{\partial u}{\partial t}(x, t) = 4 \frac{\partial^2 u}{\partial x^2}(x, t) & 0 < x < \pi, \ 0 < t \\ u(0, t) = u(\pi, t) = 0 & 0 \leq t \\ u(x, 0) = x & 0 \leq x \leq \pi \\ 0 & \text{True} \end{cases}$$

Compute the temperature of the bar at the point $x=2$
and the moment $t=0.008$ by means of a Fourier series of order 2.

1) $u(2, 0.008) = **9.****$

2) $u(2, 0.008) = **7.****$

3) $u(2, 0.008) = **5.****$

4) $u(2, 0.008) = **3.****$

5) $u(2, 0.008) = **2.****$